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1
INTRODUCTION

Investigative journalism is an area of journalism dedicated to deeper and long investigations
about a specific subject. This type of investigation is usually more sophisticated to retrieve
useful data or and connect different points of interest in the research that aren’t clearly related.

The demand for more sophisticated software to help these journalists for finding useful
connections in heterogeneous types of data without deep comprehension on how to query in-
formation between the data is a valuable resource.

1.1 ConnectionLens [1, 2]

To solve the problem stated above Connection Lens is a project developed by the CEDAR
(Rich Data Analytics at Cloud Scale) team, a project team of Inria Saclay and LIX.

Connection Lens is a project that uses graph integration of structured, semi-structured,
and unstructured data into a graph database. The system stores and indexes such graphs, and
provides a keyword search functionality that helps non-IT specialists to explore the data.

Figure 1: Example of Dataset collection. From [1]

The construction of the integrated graph, e.g. the one from Figure 2, from a given source
of data, e.g. the data from Figure 1, in ConnectionLens is detailed in the paper [1]. Here, we
briefly explain its main properties.
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Figure 2: Graph labeled extraction from the datasets shown in Figure 1 (from [1])

There are three types of nodes: dataset nodes, for each data source; struct nodes, for preserve
the internal structure of each data source; and entity nodes, represented by rounded blue boxes
in Figure 2, that are extracted through dedicated Information Extraction (specifically, Named
Entity Recognition) modules, and modeled as children of the text nodes they come from. These
NER modules are part of the ConnectionLens system.

Further, a ConnectionLens graph has three classes of edges:

1. Structural edges, which connects dataset and structural nodes to structural nodes; these
are shown in black in Figure 2;

2. Equivalence edges, which connect entity nodes that ConnectionLens considers to be ref-
erences to the same real-world entity (again see [1] for details, which are orthogonal to
the work presented here); these are shown in solid red lines labeled 1.0 (as in: confidence
is equal to 1.0) in Figure 2;

3. Similarity edges, connecting nodes considered to be similar but not identical, these are
shown with dotted red lines in Figure 2.

Further, in Figure 2, a thick green highlight connects the nodes and edges that form a
possible answer to the three-keyword query "Balkany, Africa, Real Estate". In ConnectionLens,
an answer to this query is a subtree of the graph constructed from all the data sources, such
that each keyword is matched by one of the nodes of the tree, and no tree node (or edge) is
redundant. We will discuss the search problem in more detail later on in the report, as it is the
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main focus of our work. In our example, the matching nodes are labeled "I. Balkany", "Africa",
and "Real Estate", respectively (labels shown in bold).

Specifically, after introducing some necessary background in Section 2, we focus on two
main features of ConnectionLens search:

• Many queries naturally have several answers on a graph; some queries can actually get a
very large number of answers. To help users focus their attention on the most interesting
answers, a score function is needed. A majority of our work has been on the result scoring
problem (Section 3 and 4).

• Because of the very high complexity of the search, and because ConnectionLens makes
no assumption on the score function, exhaustive search can be prohibitively expensive
- some queries cannot be allowed to run to completion, instead, they are stopped at a
time-out, and by that time, they may have produced no results or only very few. The
last part of our work (Section 5) introduces a promising search algorithm optimization
that improves search performance for a large and interesting set of queries.
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2
PRELIMINARIES

These are the definitions used for presented in previous papers about the functioning of the
ConnectionLens. In the subsections below the information is resumed, for deep comprehension
of the details on how the project works, please read the paper [1].

2.1 Graph

We assume a directed, labeled graph G = (N,E ⊆ N ×N) with λ the function assigning labels
to node and edges, and c the function assigning some non-negative costs to edges.

2.2 Query

The query in ConnectionLens is designed to be of type keyword search, where a query is
made up of query components. These components usually are words, that will pass the entity
disambiguation to match similar keywords in the nodes, but the components can also be an
exact word, a group of words in a node independent of order, or a group of words in a specific
order.

2.3 Algorithmic problems

The comprehension of the algorithmic problem in keyword search in a graph is important to
understand the difficulty to solve this kind of problem and why is very important to have a
very performing algorithm.

2.3.1 • Steiner Tree Problem
Given a set of nodes {n1, . . . , nk}, the Steiner tree problem asks for the subtree of G connecting
{n1, . . . , nk} and having the minimum cost, where the cost is the sum of the costs c of the
edges.

2.3.2 • Group Steiner Tree Problem (GST problem)
Given a set of sets of G nodes {S1, S2, . . . , Sk}, the group Steiner tree problem asks for all the
minimum-cost subtrees of G connecting at least one node from each of the sets S1, . . . , Sk.
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According to http://theory.cs.uni-bonn.de/info5/steinerkompendium/node30.html,
the problem can be approximable within O(log3 n log k) as shown in [33], where n is the number
of nodes and k the number of sets, and basically no better solution can be hoped for.

In ConnectionLens, the problem treated is closer to a Group Steiner Tree Problem, where
each group corresponds to the set of nodes that match one Query Component.

Remark (2) When we search graphs with keywords, assuming we get a set of keywords
w1, . . . , wk, and a text index informs us that each keyword wi appears exactly in the nodes of
a set Si, we are facing a group Steiner tree problem.

Remark (3) In a keyword search setting, there may be also a matching score, indicating
how well each node matches a keyword. The overall score of a tree may also depend on the
matching scores, not just on the edge costs. However, this probably does not change the
complexity of the problem.

2.4 Keyword search in ConnectionLens

Two main components need to be described in this setting. The first is the GAM search
algorithm (Section 2.4.1) that queries the graph to find answer trees. Orthogonal to this
component, the score function (Section 2.4.2) assigns a score to each tree, which is then used
to order the trees.

Importantly, the search algorithm and the score function are fully orthogonal, that is: the
score function does not make any assumption on the score function. The advantage is that any
score function can be plugged in; the disadvantage is that assumptions on the score function
(e.g., assuming that a smaller answer tree is always better) can be used by the search engine
to reduce the processing entailed by query evaluation.

2.4.1 • The GAM search algorithm
This algorithm is the one used to search the answers tree (ATs) in the graph labeled. An
important remark is that the graph is directed, but the algorithm does a bidirectional search.
The algorithm aims at returning answer trees, that is, trees consisting of nodes and edges that
are part of the original graph, such that each keyword is matched by one tree node. Each such
tree has to be minimal, in the following sense: (i) if one removes an edge from the tree, it
becomes disconnected and/or is no longer a solution; (ii) no keyword is matched in more than
one node (for more details, see [1]).

A simplified explanation of the algorithm can be given using the following three steps:

Initialization A priority queue P of (tree, edge) pairs is created. Then, for each graph node
that matches one query keyword, we create a 1-node tree consisting of the respective
node; each such tree is then paired successively with every tree edge adjacent to that
node, and each such (tree, edge) pair is pushed in the priority queue.

Grow In this step, the (t, e) pair at the top of the priority queue is extracted, where t is a tree
rooted in a node denoted r, and e is an edge connecting r to another node. A new tree
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t′ is constructed, which adds e to t; the root of t′ is distinct from the root of t. Thus,
all the pairs formed of t′ and of an edge adjacent to its root (and which does not close a
cycle within t′) are added again in the priority queue.

Merge This step is to merge two tree’s t1 and t2 that have share same root r. Merge leads to
the creation of a new, larger tree t′′. The algorithm merges aggressively, that is: all the
trees that could merge with t′′ are identified and merged with it, as soon as t′′ is built.

Observe that the GAM algorithm starts with nodes matching query keywords; these are
leaves in the trees obtained by the first generation of Grow steps. As trees are obtained through
Grow and Merge, query keywords are always matched on the leaf nodes. It follows from the
notion of minimality introduced above, that in a minimal tree, all the keywords are matched
on leaves.

Through Grow, trees get taller (the distance from the root to the leaves increases); through
Merge, they get wider (the set of their leaves increases). Thus, eventually, a tree can have a
leaf matching each query keyword; at this point, it is a solution.

The algorithm execution ends when k answers tree are found in the case of top k answers,
or when all the answers are found, or it runs out of time for a fixed timeout.

2.4.2 • Ranking function
The ranking function is applied to the answers trees found by the search algorithm, to score the
answers. There are several score components, and they are combined to create a final score.

1. Matching score ms(t) : This is the score related to the similarity of the keywords to
the nodes that they match on a tree t. In ConnectionLens, this is the average, over all
keywords wi ∈ Q, where Q is the query, and the node in t that matches wi using the edit
distance.

2. Edge confidence score c(e): This is the score used to calculate the similarity between
nodes. It’s for example in Figure 2, the edge between the Central African Republic and
Centrafrique of 0.85, which was detected to be similar entities by some measure, but as
the words inside are not the same, then it’s not trivial to say they refer to the same thing.
This measure is calculated by the NLP algorithms. This is important because answers
that have more uncertainty in their connections, probably are not sure to be the most
relevant to the user.

3. Edge specificity s(e): This is a measure to how "rare" is an edge, because answers with
low specificity edges or say general are less likely to produce relevant answers. For an
edge e ∈ E, e = n1

l−→ n2, and a the notation N l
◦−→ and N l−→◦, respectively for the number

of edges with label l entering and exiting a node.The specificity of an edge is calculated
as follow:

s(e) = 2/(N l
n1−→ +N l−→n2)
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The final score function is a linear combination of this three measures for the tree, in
the case of ConnectionLens the specificity and confidence of a tree is the multiplication of the
contribution of individual edges. So the final measure is expressed by the following formula:

score(t, Q) = α ·ms(t, Q) + β ·∏e∈E c(e) + (1− α− β) ·∏e∈E s(e)

Where α and β are parameters to be chosen, such that α, β ∈ [0, 1) and α + β ≤ 1
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3
LITERATURE STUDY

The choice of an appropriate result ranking function is of utmost importance for the final user
to find as easily as possible the most useful answers among all those found by the query engine.

In this section, we provide an extensive bibliographic review of keyword search algorithms.
This is intended to study all possible ranking functions studied until now, on problems related
to the keyword search problem studied by ConnectionLens. This study is a contribution to the
field of keyword search in heterogeneous sources because it compiles and summarizes previous
papers in an organized form.

As we envision publishing this as a survey in the future, given the important volume of works,
and the presence in the team of a post-doc (Madhulika Mohanty) with knowledge of some of
the works surveyed here, she has contributed initial versions of the sub-sections: 3.1.3, 3.1.15,
3.1.27, and 3.1.28. The remaining ones were studied by myself also with some help from my
supervisor.

3.1 Ranking Functions Previously Proposed in the Lit-
erature

All the papers reviewed were summarized in four main pieces of information: The type of data
ingested by the search engine, the stated keyword search problem or some problem description,
the exact definition of an answer to the keyword search problem, and the ranking function used.
For ease of reuse of our study, each section is titled with the title of the respective research
work, whose year is also recalled. We cover works in their natural, temporal order.

3.1.1 • Keyword searching and browsing in databases using BANKS,
2002 [3]

Type of data: Relational databases. They model a relational database as a graph, where
each tuple is a node, and nodes are connected by foreign key and other relationships, such as
inclusion dependencies, or some reverse (backward) edges.

Figure 3 shows an example from [3]: a relational database schema (at the top), and a
database fragment (at the bottom), where the (primary key, foreign key) edges materialize
the graph on which the keyword search applies. A sample query on this graph is "Soumen
Sunita", asking for connections between one node matching "Soumen" and another one matching
"Sunita".

The authors state that they don’t want to view the graph as undirected, because some
very well-connected nodes in the undirected graph may lead to small-cost (formally, "good")
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Figure 3: Sample relational database and graph-oriented view of the data (from [3])
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solutions, but which are meaningless.
This modeling is shared by all the keyword search works that have considered relational databases.
It is implicit whenever the type of data is relational.

Problem: The goal is to answer keyword queries on the graphs thus obtained from relational
databases.

Answer: Answers are rooted trees connecting nodes that match the query keywords. A set of
useful terms are introduced:

Joined Network of Tuples (JNT) is a set of tuples from the database, such that each
of them joins (through a primary key - foreign key pair) with at least another tuple. A
JNT is total (TJNT) with respect to a given query, if its tuples, together, match all the
query keywords.

Joined Tuple Tree (JTT) is a JNT that is also a tree, that is: from each tuple in the JNT,
there is only one path reaching any other tuple.

A solution to the keyword query is TJTT, that is: a JTT that matches all query keywords.

Ranking function: Answers are ranked using a notion of proximity and prestige of a node
using incoming links (similar to web search). Proximity is the distance from a node to another,
while prestige is the number of links incoming to the node. Specifically, they introduce:

Node weights: N(u) = in-degree of u
Edge weights for (u, v):

w(u, v) =



s(R(u), R(v)) where R(u) is the relation to which u belongs,
and s(R(u)) is a score of this relation,
if (u, v) exists but not (v, u)

INv(u)s(R(v), R(u)) if (v, u) exists but not (u, v),
where INv(u) is the in-degree of nodes
of type v wrt u

min(s(R(u), R(v)), INv(u)s(R(v), R(u))) otherwise

For the relevance score, they defined the following terms:

Nscore(v) = N(v)/Nmax or log(1 +N(v)/Nmax)(idf) for each node v
Escore(e) = w(e)/wmin or log(1 + w(e)/wmin) for each edge e

For an answer tree, they compute an edge score and a node score as follows:

Nscore = mean of Nscore(v) over the leaves v
Escore = 1/(1 + ∑

eEscore(e))
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Figure 4: An example of a many-to-many relationship with a JNT bigger than the dataset. In
(a) the schema of the example dataset and in (b) a very long JNT for an example of a query
searching for "c1 sn". (from [4])

They consider two forms of tree relevance scores:

• Additive: (1− λ) ∗Nscore+ λ ∗ Escore

• Multiplicative: Escore ∗Nscoreλ

The three options (for edge score, node score, and combination), each of which can take two
values, lead to a total of eight combinations. To evaluate these combinations, they check how
they score 4 ideal results for a set of 7 queries. They say better results were achieved with log
scaling of edge and λ = 0.2.

They note that the score combinations with log scaling nodes or edges and a multiplicative
overall score are not useful because scores were too small.

3.1.2 • DISCOVER: keyword search in relational databases, 2002 [4]

Type of data: Relational databases

Problem: The authors make some assumptions on the database, such as: no attribute is both
FK and PK for two other relations (one attribute can be just PK in one table and FK in
another table).

Answer: An answer is a Minimal Total Joining Network of Tuples (MTJNT), that is:
a TJTT such that removing a tuple from it makes it disconnected, or makes it miss some of
the keywords. As the authors state, a JNT can be as large as the database, an example can be
seen in Figure 4. As a consequence, they recommend that with the query, users also specify a
maximum size of the acceptable MTJNTs.
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Ranking function: No ranking function is presented since this is not their focus. The authors
just want to find all the MTJNT and do this by exploiting the schema as much as possible.
The idea is that the schema describes all possible PK-FK joins; therefore, this can be exploited
to find "templates" for solutions.

3.1.3 • DBXplorer: A System for Keyword-Based Search over
Relational Databases, 2002 [5]

Type of data: Relational databases

Problem: Keyword search over relational databases

Answer: The answers are TJTTs.

Ranking function: The retrieved rows (results of SQL, interpreted as JTTs) are ranked by
the number of joins involved (ties are broken arbitrarily); this is equivalent to a ranking by the
number of edges (the fewer, the better). The reasoning provided by the authors is that joins
involving many tables are harder to comprehend.

3.1.4 • XRANK: Ranked Keyword Search over XML Documents
(Guo et al.), 2003 [6]

Type of data: XML documents

Problem: They search in XML documents. The hyperlinks are not considered as edges, just
as a measure of awareness (importance) of a node.

Answer: The result is the set of elements that are the lowest common ancestors of at least
one occurrence of all of the query keywords. That is: for any combination of nodes (one that
matches each keyword), their lowest common ancestor is an answer.

Note that here, unusually, an answer is a node, not a tree. This is because each answer is
seen as "encapsulating" the tree(s) that it is rooted into.

Ranking function: The authors list some desired properties for ranking:

1. Result Specificity: Favor more specific results, e.g., subsections should be ranked better
than sections.

2. Keyword proximity: "Close-by" results should rank higher. The authors distinguish prox-
imity (as edit distance in a file) from specificity (which also takes into account the level
in the tree).
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3. Hyperlink Awareness: The authors state that the number of ID-IDREF links incoming
to a node could be leveraged to give a higher score when this number is high.

Given a query Q = (k1, k2, ..., kn), whose result is denoted R, the ranking score they attach
to an element v is computed as follows. Let 0 < decay ≤ 1 be a given parameter that degrades
scores based on the distance from the root node v.

• Let (v, v2)...(vt, vt+1) be the path in R from v to the node vt+1 matching the keyword ki.
They define r(v, ki) = ElemRank(vt) ∗ decayt−1, where ElemRank is this the PageRank
score of v within the graph.

• If a keyword ki is matched more than once in R, let r1, . . . , rm be the score computed as
above for each of the individual match; they define r̂(v, ki) = f(r1, r2, .., rm), where f is
an aggregation function (by default, f is max)

• Finally, they compute R(v,Q) = p(v, k1, . . . , kn) ·∑1≤i≤n r̂(v, ki), where p is a proximity
function, defined as the size of the smallest text window in v that contains all the query
keywords.

The authors suggest that the proximity function in highly structured datasets can be set to
1.

3.1.5 • Keyword Proximity Search on XML Graphs, 2003 [7]

Type of data: XML documents.

Problem: Edges can be followed in both directions. They accept graphs with multiple roots,
since:

• They want to support different XML documents in the same graph;

• They prefer that roots of large collections are not included to avoid false proximities.

Answer: The answer of a keyword query is an MTTON (minimal total target object network),
which is a tree if one considers the graph undirected.
What to show to users The authors distinguish a query answer (in a computational sense),
and what is shown to the users. Specifically:

1. They (i) assume the DB admin associates a minimal piece of information, called target
object, to each node, and (ii) display the target objects instead of the nodes in the results.

2. They identify a problem of "multiplication" of answers as follows. For a query of 3
keywords a, b, c, there can be nodes a1, a2 matching a, connected to a node b1 matching
b, which is connected to two nodes c1, c2 matching c. This would lead to four solutions,
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based, respectively, on a1, b1, c1, a1, b1, c2, a2, b1, c1 and a2, b1, c2. They say it is wasteful
to show four such solutions. They handle this by a combination of steps, in particular
showing results on demand and grouping them by their Candidate Network (CN). A
Candidate Network is a schema-level answer, i.e., it is the image (in the schema graph)
of one or many answers.

Ranking function: It seems that the score of a solution is the size in the number of edges for
the MTTN (minimal total node network) j equivalent of the MTTON (minimal total target
object network) t (which is no guarantee to be unique). The definition that maps the XML
graph (where MTTON belongs) to the schema graph (where MTTN belongs) is shown in detail
on the paper.

3.1.6 • Efficient IR-style keyword search in relational databases,
2003 [8]

Type of data: Relational databases.

Problem: They consider keyword queries, not only with the standard AND semantics pre-
sented so far (all the keywords must be matched) but also with OR semantics (some key-
words are optional). The key contribution in this paper is the incorporation of IR information
retrieval-style relevance ranking of tuple trees into their query processing framework.

Answer: An answer is a joining tree of tuples (JTT).

Ranking function: The score assigned to a joining tree of tuples consider individual IR-style
relevance score for textual attributes implemented in RDBMS and a combination of several
other score components.

Let ai be a textual attribute that is part of an answer tree T . To evaluate the score of ai
with respect to a given query Q, the authors propose to rely on the function below, borrowed
from the IR literature [34]:

Score(ai, Q) = ∑
w∈Q∪ ai

1 + ln(1 + ln(tf))

(1− s) + s
dl

avdl

∗ ln(N + 1
df

),

where tf is the frequency of w in ai, df is the number of tuples in ai’s relation with word w
in this attribute, dl is the size of ai in characters, avdl is the average attribute-value size, N is
the number of tuples in ais relation, and s is a constant (they propose 0.2).

Based on the above, the score of a joining tree of tuples T is defined as

Combine(Score(A,Q), size(T )) =
∑
ai∈A Score(ai, Q)

size(T ) ,

where A = 〈a1, ..., an〉 is a vector with all the textual relational attributes present in T .
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3.1.7 • ObjectRank: Authority-Based Keyword Search on Databases,
2004 [9]

Type of data: They search in databases (which they state can come from XML, or relational,
or the web)

Problem: They search in a database (which they state can come from XML, or relational, or
the web) modeled as a labeled, directed graph.

• They assume available a schema graph.

• From the schema graph, they create an authority transfer schema graph (ATSG)
that reflects the authority transfer rates that each "kind of" edge has. Further, for one
edge in the schema graph u→ v, there can be different authority transfer rates for u→ v
and for v → u, respectively: "Notice that the amount of authority flow from, say, paper
to cited paper or from paper to author or from author to paper, is arbitrarily set by a
domain expert and reflects the semantics of the domain. For example, common
sense says that in the bibliography domain a paper obtains very little authority
(or even none) by referring to authoritative papers. On the contrary, it obtains
a lot of authority by being referred by authoritative papers."

• From the above, they create an authority transfer data graph (ATDG) where each
data edge u → v has an authority transfer based on what it had in the ATSG but also
impacted by the number of outgoing edges of u in the graph. Further, the sum of the
outgoing authority transfers of u in the ATDG may be smaller than the outgoing transfer
corresponding to u in the ATSG, if u does not have all the outgoing properties of its
schema counterpart.

Answer: An answer to the query is a ranked list of nodes from the database, such that the
node leads to query matches. In other words, they only include in the answer roots of TTJTs,
and if a node is a root to two such trees, they only include it once.

They support both AND semantics (the answer/root node must lead to a match for each
keyword) and OR semantics (the answer/root node must lead to a match for at least one of
the keywords)1.

The authors point out that their method may return a node for a 1-keyword query even if
the node does not match that keyword! This is an effect of the PageRank-style scoring (see
below).

Ranking function: The score of a node v with respect to one keyword w is a combination of
1The paper is somehow unclear because on one hand what looks natural is for the root to have edges that

lead to the nodes matching the keywords, but on the other hand, when defining the score (see below), they
mention the opposite probability, that starting from the nodes matching the keywords, one would reach the
root.
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the global object rank of v in G (this is query-independent) and a keyword-specific object rank
rw(v).

1. The score of a node v with respect to one keyword w is a combination of the global object
rank of v in G (this is query-independent) and a keyword-specific object rank rw(v). The
latter reflects the probability that a random surfer, starting from any of the nodes that
matched keyword w (these are called S(w)), reaches v. In turn, the keyword-specific object
rank is computed by solving a fixpoint computation very similar to PageRank, that starts
from S(w) and iteratively transfers authority based on the ATSG, until stationarity.

2. The score of a node v wrt several keywords is computed as:

(a) For AND semantics (all keywords must be reachable from the root), as the product
of the keyword-wise PageRanks

(b) For OR semantics, in a more permissive way, starting from rw1∨w2(v) = rw1(v) +
rw2(v)− rw1(v)rw2(v) for 2 keywords.

They mentioned that one could assign higher weights to the relevance of a node with respect
to an infrequent keyword.

3.1.8 • BANKS2: Bidirectional Expansion for Keyword Search
on Graph Databases 2005 [10]

Type of data: As in BANKS (Section 3.1.1), they search in relational databases,

Problem: As in BANKS (Section 3.1.1), they search in relational databases, viewed as directed
graphs. They re-state that it is important to view a graph as directed (also) because the
strength of the connection between two nodes is not necessarily symmetric. Therefore, for
every "forward" edge u → v (with weight 1), they add the opposite-direction edge v → u with
weight wvu = wuv ∗ log2(1 + indegree(v)).

Answer: The algorithm looks for approximate solutions to the GST problem. BANKS-2
extends BANKS by allowing bidirectional exploration of the answer tree, by exploring what
the algorithm considers as promising roots. To decide which node should be forward-explored,
BANKS-2 uses a notion of "activation", a heuristic score attributed to candidate nodes.

Ranking function: In a way very similar to BANKS, this article defines a default for the
experimentation with the following considerations:

1. The score s(T, ti) of a tree T with respect to a keyword ti is the sum of edges weights on
the path from the root of T to the leaf containing ti.

2. The aggregated score of an answer tree T is:
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E(T ) = ∑
i s(T, ti)

3. The prestige of each node is a biased version of PageRank, where the probability of
following an edge is inversely proportional to edge weight from the data graph.

4. The tree node prestige score is the sum of the prestige of its leaf nodes and root.

5. The overall tree score is defined as ENλ, where λ adjusts the importance of the edges
(they propose a default of λ = 0.2).

3.1.9 • Keyword Proximity Search in XML Trees, 2006 [11]

Type of data: They search in XML trees.

Problem: They consider keyword search queries, where a query consists of several keywords.

Answer: The answer is the set of minimum connecting trees (MCTs) of the matches of indi-
vidual keywords.

Ranking function: The quality is not the focus of this paper; the correct results are uniquely
defined and for a given set of keyword matches, there is only one2.

3.1.10 • Effective keyword search in relational databases, 2006 [12]

Type of data: They search in relational databases.

Problem: Queries have OR semantics. There is a (very) strong focus on porting IR-style
metrics to a relational database setting.

Answer: An answer is a tuple tree. They use the schema graph to join the nodes. The size of
the tuple tree is the number of tuples in it.

Ranking function: The authors make a lot of effort to port IR-style ranking techniques to
this relational joining tuple tree setting. Their answer score is a measure of similarity between
the query and the tuple tree, such as:

Sim(Q, T ) = ∑
k∈Q,T weight(k,Q) · weight(k, T )

2The novelty with respect to the work "Keyword Proximity Search on XML Graphs" by the same except
Srivastava (XKeyword, Section 3.1.5) is that here they also show how to find the minimum connected trees in
one pass over the XML tree.
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where weight(k,Q) is the term’s raw qtf (term frequency in the query). For the weight in the
tuple tree T , they use four normalizations to adapt tf-idf. Here T is a super-document, and
each text column Di is a document. To compute the weight of T:

ntf = 1 + ln(1 + ln(tf)), where tf is the term frequency
weight(k,Di) = ntf · idf g

ndl ·Nsize(T )

In the above, ntf has already been defined; the other ingredients are so-called normalization
factors, which will be defined below. Moreover, they compute

weight(k, T ) = Comb(weight(k,D1), . . . , weight(k,Dm))

where Comb combines the term weight into documents, into a term weight into a tuple tree.
In detail, the four normalizations they defined are:

Tuple tree normalization (Nsize(T )) Bigger trees have more chance to include query key-
words. However, simply weighting trees by the raw size(T ) suboptimal too, an example
is adressed on the paper section Tuple Tree Size Normalization. This is calculated as
follow:

Nsize(T ) = (1− s) + s ∗ size(T )
avgsize

where avgsize is the average size of answers.

Document Length normalization (ndl) Different text columns have different sizes, thus
keyword matched in columns with fewer words are more important than columns with
more words. Good examples of this last consideration appear on the paper section Doc-
ument Length Normalization Reconsidered. The formula they use to reflect this is:

ndl = ((1− s) + s ∗ dl

avgdl
) ∗ (1 + ln(avgdl))

where dl is the document length in the text column Di, and avgdl is document length in
this column.

Document Frequency Normalization (idf g) This considers the distribution of words in
different columns since a word can appear many times in one column, while in another
could be quite rare. To solve this problem, the idea was to use the global values, and not
the ones from the text column, thus:

idf g = ln
N g

df g + 1
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where N g are the number of all text columns and df g is the term frequency in all these
text columns.

Inter-Document Weight Normalizations (Comb()) This is concerned with the aggrega-
tion of terem weights in all documents in T , into a set of term weights in T itself. To
account for the fact of bigger answers tree have more terms, the authors propose the
formula below inspired from the ntf (term frequency normalization):

Comb() = maxWgt ∗ (1 + ln(1 + ln(SumWgt

maxWgt
)))

where maxWgt is the max weight(k,Di) for a tree T , and SumWgt the sum of the
weights.

The authors also discuss the case when a keyword matches a text column name or another
schema term. For this case, to adapt the formulas used before, the weight of the keyword with
the column name will be adapted to receive a schema-based document frequency. Then the tf
will be 1 and the df g will be the schema global document frequency. Then if an answer T has
a tuple that matches both in the text column value and text column name a term, the bigger
value between them is used, and the keyword is interpreted as a schema term or a value term.

Phrase search The authors also consider that users may want to search for a given phrase,
i.e., certain words appearing in a certain order. They also provide an adaptation of their
formulas to this scenario.

3.1.11 • Efficient Keyword Search Across Heterogeneous Rela-
tional Databases [13]

Type of data: They search in a set of relational databases.

Problem: They consider several, independent databases, which they try to integrate by means
of keyword search. Thus, a query is a set of keywords, each of which may match a data
node from distinct databases. To connect the matches, the system must identify joins among
columns from different databases. In contrast, when searching in a single database, tuples can
be interconnected in an answer only by primary key–foreign key joins.

Answer: An answer is a joined tree of tuples, and these tuples can come from different
databases.

Ranking function: let T be an answer to Q. Let a1, . . . , an be relational tuple attributes
occurring in T , and j1, . . . , jm be the FK joins used to build T . Furthermore, let d1, . . . , dm
be the attribute value pairs “matched” in joins j1, . . . , jm, respectively. The score score(T,Q)
is defined as: αw·scorew(T,Q)+αj ·scorej(T )+αd·scored(T )

size(T ) where αw, αj, and αd are coefficients, and
size(T ) is the number of joins in T . Further:
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• scorew(T,Q) = ∑
ai
score(ai, Q) where score(ai, Q) quantifies how well ai matches the

keywords in Q; this score is computed using a TF-IDF metric.

• scorej(T ) = ∑
ji score(ji) where score(ji) measures the confidence in the join ji that is

part of T : if the join is between tables in the same database, the join confidence is 1,
otherwise, it is computed based on the system’s confidence that the respective columns
should be joined. Observe that this coefficient is at the level of the schema (it refers to a
pair of columns).

• scored(T ) = ∑
di
score(di), where score(di) is the confidence in joining two values from

two columns. This part of the score measures the instance-level confidence in a value join.

The authors recommend setting αw, αj, and αd either all identical or to different values,
possibly based on user input.

3.1.12 • Spark: Top-k keyword query in relational databases,
2007b [14]

Type of data: They search in relational databases.

Problem: Queries can support both AND and OR semantics and modulate somehow between
them (see "Completeness factor" below). The goal is to find the k highest-ranked results. They
accept an answer in which a keyword is matched in more than one node (tuple); for a 2-keyword
query (a, b), they also accept a 2-tuple answer such that the first tuple matches a and b and
the second tuple matches b! (minimality is not a concern).

Answer: An answer is a joined tuple tree (JTT); its size is the number of tuples. A JTT is
treated as a virtual document.

Ranking function: They propose a score method which they say is better than previous ones,
the observe that is not monotonic with respect to any of its components.

Each JTT belongs to the result produced by a certain relational algebra expression; the
latter is called Candidate Network (CN). They denote by CN(T ) the candidate network of
a given result tuple T .

Their main score function is:

scorea(T,Q) = ∑
w∈T∩Q

1 + ln(1 + ln(tfw(T )))

(1− s) + s · dlT
avdlCN∗(T )

· ln(idfw)

where tfw(T ) = ∑
t∈T tfw(t), idfw = NCN∗(T ) + 1

dfw(CN∗(T ))
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CN∗(T ) is identical to CN(T ) except that all selection conditions are removed. CN∗(T ) is
also written CN∗ if there is no ambiguity.

This formulas has some problems since calculating dfw(CN∗) and NCN∗ would take too

much time. Then an approximation is made using p = dfw(CN∗)
NCN∗

, then the approximation is
made considering independence between relations and they estimate p as:

dfw(CN∗)
NCN∗ + 1 ≈

dfw(CN∗)
NCN∗

= p ≈ 1−∏
j(1− pw(Rj))

Another term difficult to compute is avdlCN∗(T ); they estimate it as ∑
j avdlRj

.
This approximation attained an acceptable accuracy (30% relative error) for small CNs (of

size up to 3). They claim they will study better approximations in future work!

Other ranking factors They’ve used some other factors to the score:

• Completeness factor: Motivated by the fact that matching different words is better
than matching the same word, they map a document into a point in m-dimensional space
(where m is the number of keywords in the query), calculate the Lp distance to a ideal
document Pideal = [1, . . . , 1] and normalize it:

scoreb(T,Q) = 1− (
∑

1≤i≤m (1− T.i)p
m

)
1
p

where T.i is the normalized term frequency of a JTT with respect to the keyword wi, i.e.,

T.i = tf(wi)
max1≤j≤m tfwj

(T ) ∗
idfwi

max1≤j≤m idfwj
(T )

The p parameter helps to controle the balance between AND and OR semantics, for ex-
ample p→∞, then scoreb(T,Q) = mini(T.i), thus, if a JTT doesn’t match all keywords,
its score is 0.

• Size Normalization Factor: A larger JTT (or, equivalently, CN) means more occur-
rences of keywords. To account for this, a normalization factor is:

scorec = (1− s1 − s1 ∗ size(CN)) ∗ (1 + s2 − s2 ∗ size(CNnf))

where size(CNnf) is the number of non-free tuples (that match keywords) set for the
CN. In the experiments they found s1 = 0.15 and s2 = 1

|Q|+ 1 have yielded better results
for the queries.

Final Score: The final score takes multiplies the previous factors, i.e.:

score(T,Q) = scorea(T,Q) · scoreb(T,Q) · scorec(T,Q)
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3.1.13 • BLINKS: ranked keyword searches on graphs, 2007 [15]

Type of data: They search on directed graphs.

Problem: Keyword search on directed graphs.

Answer: An answer to a query q = (w1, ..., wm) is a pair T = 〈r, (n1, ..., nm)〉 where r and
wi are nodes such that: (i) every node ni contains a keyword wi and (ii) For every i, there is
directed path from r to wi. The answer is a subtree of the graph, r is the root of them match
and ni the matches. This only considers edges in the forward direction.

They formulate a top-k search problem as follows: given a scoring function S, the score of
a node r is defined as the score of the best answer rooted in r; the top-k query returns the k
nodes with the highest score thus defined, and the best answers rooted at that nodes.

Ranking function: They state that scoring is not the main focus of their work. The scoring
function they use is below:

S(T ) = f(S̄r(r) + ∑m
i=1 S̄n(ni, wi) + ∑m

i=1 S̄p(r, ni))

where S̄p(r, ni) is the shortest-path distance from r to ni based on a non-negative graph distance
measure. Among the terms summed in the input of f , the first reflects a contribution from the
answer root, the second from the quality of the matches, and the third from the paths from the
root to each match.

They discuss two interesting properties of the score function:

• Match distributivity: "the net contribution of matches and root-match paths to the
final score can be computed in a distributive manner by summing over all matches.
Consequently, all root-match paths contribute independently to the final score, even if
these paths may share some common edges". They contrast this with other score functions
where "each edge weight is counted only once, even if the edge participates in multiple
root-match paths".

• Reliance on shortest paths: "the score contribution of a root-match path is the
shortest-path distance from the root to the match in the data graph [...] This semantics
[...] is intuitive and clean, and allows us to reduce part of the keyword search problem
to the classic shortest-path problem. Most of our algorithms and data structures assume
these semantics".

In paper section Optimizations and Other Issues, they revisit the score issue, providing the
following concrete proposal:

S(T ) = (α ∗ S̄r(r) + β ∗∑m
i=1 S̄n(ni, wi) + γ ∗∑m

i=1 S̄p(r, ni))−1

for some weights α, β, γ that they don’t even provide in the experiments.
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3.1.14 • Finding top-k min-cost connected trees in databases (DPBF),
2007 [16]

Type of data: Weighted, undirected graphs.

Problem: Find the top-1 min-cost connected tree. The authors have sketched an extension
for top-k solutions.

Answer: Given a set of keywords, they want to find trees that match all the keywords in their
leaves. The cost of a tree is the sum of the costs (weights) of its edges. The answer to the query
is then the best (single) tree connecting nodes that match the respective keywords. Only the
best (returned) tree is guaranteed to be optimal. The authors sketch an extension to allow it
to output more trees, but these are not guaranteed to be the best result trees.

Ranking function: No meaningful quality score applies, since there is only 1 answer.

3.1.15 • LABRADOR: Efficiently publishing relational databases
on the web by using keyword-based query interfaces, 2007 [17]

Type of data: Relational Databases.

Problem: User specifies a query as a set of keywords, and the system generates a set of
candidate SQL queries to be executed on an RDBMS, in order to compute the answers.

Answer: The notion of an answer is a list of tuples having all the attributes of all the joined
relations. (This can be interpreted as the JTTs of Spark, presented in Section 3.1.12.)

Ranking function: The results (tuples) are ranked by their likelihood given the SQL query
that generated them. The SQL queries are in turn ranked by their likelihood of satisfying
the user’s keyword query. Given a tuple tree T resulting from the candidate network, CN∗
involving the attributes, A1, A2, . . . Am, its score is calculated as follows:

P (T |CN∗) = η ×
∑m
i=1 cos (−→Ai,−→ai )
|CN∗|

where −→Ai represents the vector of all possible values for the attribute Ai in the database,
−→ai denotes the vector of all the values for attribute Ai that match the query, and η is a
constant. The weights for the vectors are learned by adapting tf-idf to attribute values (but
more complicated than the usual tf-idf computations).
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3.1.16 • EASE: An Effective 3-in-1 Keyword Search Method for
Unstructured, Semi-structured and Structured Data, 2008 [18]

Type of data: Search in unstructured, semi-structured, or structured data modeled as graphs.

Problem: This paper claims to be the first to study keyword search for heterogeneous data
sources, however, they don’t make any attempt to interconnect different data sources in a graph.

Answer: These authors want to return graphs, not just trees. The motivation for this is that
in some databases, e.g., biological ones, with protein-protein interactions, etc., users may be
looking not just for a tree, but for a "neighborhood" (relatively small subgraph) in which the
keywords appear. Such a neighborhood has the advantage of giving more information to the
user.

To define this, they introduce a few notions:

• Given a graph G and a node v ∈ G, the centric distance of v, denoted CD(v), is the
maximal value among the distances between v and any node u ∈ G;

• The radius of a graph G, denoted R(G), is the smallest centric distance of every node
in G;

• Given a query Q and a graph G of radius r:

– a node ω ∈ G is called a content node if it contains one of the query keywords;
– a node ω ∈ G is called a Steiner node if it is on a path u ; v such that u, v are

content nodes;
– the subgraph of G consisting of the Steiner nodes of G and the paths they are on is

called a r-radius Steiner graph.

The r-radius Steiner Graph Problem is to find all the Steiner Graphs of radius at most r.
Then, the top-k r-radius SGP is to find the k Steiner Graphs of radius at most r in the order
of their relevance for the query.

Ranking function: There are some terms to consider when we are dealing with different
sources of information. The first term considered is the compactness between two content
nodes, computed as follow:

SIM(ni, nj) = ∑
ni!nj

1
(|ni ! nj|+ 1)2

where we sum for all path between a node ni to nj, and |ni ! nj| is the length of the path.
To measure the relevance between the input keywords (and not just the nodes) the next

formula extends the previous one:
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SIM(< ki, kj > |SG) = 1
|Cki
∪ Ckj

|
·∑ni∈Cki

;nj∈Ckj
; SIM(ni, nj)

where SG is the Steiner graph and Cki
is the set of content nodes that contains ki, also the |C|

means the number of nodes.
As most part of these therms are precomputed, for an evaluation for the compactness of an

answer SG to query K:

ScoreDB(K,SG) = ∑
1≤i≤j≤m SIM(〈ki, kj〉|SG)

And the final model is:

Score(K,SG) = ∑
1≤i≤j≤m Score(〈ki, kj〉|SG)

where

Score(〈ki, kj〉|SG) = SIM(〈ki, kj〉|SG) ∗ (ScoreIR(ki, SG) + ScoreIR(kj, SG))

ScoreIR was presented before and is a TF-IDF based, with the formulas below:

ntf(ki,G) = 1 + ln(1 + tf(ki,G))

idfki
= ln( N + 1

Nki
+ 1)

ndlG = (1− s) + s ∗ tlG
avgtl

ScoreIR(ki, SG) = ntf(ki,G) ∗ idfki

ndlG

Where tfki,G is the term frequency in G. N is the number of r-maximal radius graph and
Nki

are the ones that contains ki. tlG is the total number of terms in G and avgtl is the average
number of terms among all such r-radius graphs.

3.1.17 • Keyword Search on External Memory Data Graphs, 2008 [19]
This is a follow up on BANKS1 and BANKS2 to also consider external memory graphs. There
is no change to the problem nor scoring function, instead, the algorithms deployed are different.

3.1.18 • STAR: STP approximation in relationship graphs, 2009 [20]

Type of data: They consider undirected graphs with labels on nodes and edges and weights
on edges. However, an extra, more or less hidden assumption is made: namely, that there exists
a taxonomy in the graph, which enables finding a first connecting tree very fast. This first
answer will then be improved upon (that is the nature of the approach).

Problem: They solve (approximatively) a Steiner Tree Problem, that is: given a set of k
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nodes, find the smallest-cost tree connecting those nodes. This is different from the majority
of works considered here, which address variants of the GSTP.

Answer: Given a set of nodes (not of keywords), they are interested in finding the (single)
tree connecting them which has the minimum cost, where the cost is defined as the sum
of the edge weights. This definition of cost is an important aspect of their approach (all their
technique depends on it).

They also provide an extension to return top-k results (the best plus more trees), but they
do not provide guarantees about the other trees.

Ranking function: They recall that the problem is NP-hard and therefore solve it with an
approximation: they guarantee a solution whose cost is at most O(log(n)) higher than the true
cost of the (single, ideal) solution.

3.1.19 • Top-k Exploration of Query Candidates for Efficient
Keyword Search on Graph-Shaped (RDF) Data, 2009 [21]

Type of data: They consider RDF (directed) graphs. In particular, they identify type
and subclass edges (not other special RDF properties).

Problem: A query is a set of keywords. They also allow the keywords to match on the edges
(as opposed to numerous methods that only matched on the nodes).

Answer: An answer is a SPARQL query (not data). In particular, they consider conjunctive
SPARQL queries.

Ranking function: They state that the score of a candidate query reflects the extent to which
it matches the user’s need. They introduce several score functions in the paper section Scoring,
but unfortunately, they are tied to particularities of their algorithms and methods (they would
not have been able to define the score earlier on). They use elements such as: the number of
edges (in a graph, not in a tree, since their queries are computed from graphs); popularity of
a node (resp., edge) label in the graph; the quality of the match between the node/edge label,
and a keyword.

The authors’ approach and intuition behind their cost metric is quoted here as we found it
expresses things well: "the costs of individual paths are computed independently, such that if the
paths share the same element, the cost of this element will be counted multiple times. This has
the advantage that the preferred graphs exhibit tighter connections between keyword elements.
This is in line with the assumption that closely connected entities more likely match the users’
information need."
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3.1.20 • Structured data retrieval using cover density ranking,
2010a [22]

Type of data: Relational databases

Problem: Keyword search.

Answer: The definition of an answer and evaluation of a query are the same as the technique
described in Section 3.1.6 – the answers are JTTs.

Ranking function: They have adapted the Cover Density proposed over unstructured texts
to structured data. The scheme proposed is generalized to work for any structured data. They
introduce:

1. Document: A document, D, in structured data is defined as a concatenation of various
fields, di. This means that a document is essentially a tuple from a candidate network,
CN . However, the ordering of the fields matter in the final ranking (and therefore, the
ordering of the fields after joins).

D = {d1, d2, . . . , d|D|}

2. Structured Extent: A structured extent, E, of a document D is a subset of the fields
in D. That is, E ⊆ D. A structured extent satisfies a term set Q′ ⊆ Q if all the terms of
Q′ appear in E.

3. Structured Cover: A structured cover is a structured extent that satisfies Q′ and does
not contain a smaller subset of fields that also satisfies Q′. The set of all structured covers
of a structured document D that satisfy the largest subset of Q is denoted by CS.

4. Scoring a document: Each structured document, D, is scored as per its covers as
follows:

score(CS) =
∑
E∈CS

score(E)

score(E) =


H
|E| , if|E| > H

1, otherwise

where H ∈ [1,∞) is a tuning parameter. Decreasing H rewards documents that contain
smaller subsets of fields that completely satisfy a query’s term set.

Essentially, the JTTs are scored in an IR-style by favoring tuples that contain maximum possible
query terms and are shorter in length.
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3.1.21 • Ranking support for keyword search on structured data
using relevance models, 2011 [23]

Type of data: They work on directed graphs where they distinguish resource nodes (non-
leaves) from attribute nodes.

Problem: Keyword query.

Answer: They say a keyword k matches a resource r if k matches at least one attribute of r
or at least one edge going from r to one of its attributes. Then, an answer is a minimal rooted
directed tree that contains at least one resource matching every query keyword.

Ranking function: This paper is mostly, first and foremost about the ranking. We cite below
the authors’ motivation as it is very clearly stated:

"The major shortcomings of previous work can be summarized as follows:

• The minimal distance heuristic behind proximity search is rather
convenient for the efficient computation of results but does not directly
capture relevance.

• The adoption of IR-based ranking is also problematic because unlike
document ranking, the score of a result in this setting is an aggregation
of several resources’ scores. Combining resources with high “local scores”
however, does not always guarantee highly relevant final results. Recent
evaluation results [32] suggest that the proposed normalization methods
are not effective in dealing with this issue.

• More importantly, previous work implicitly assumes that relevance is
completely captured by the keyword query that is mostly short
and ambiguous. We consider this assumption to be too strong espe-
cially in this setting, where users might not be aware of the underlying
structure and terminology of the database and thus, cannot specify com-
plete queries."

To address these shortcomings of previous work, the authors propose a Relevance Model
based on the idea that for a given information need, queries and documents relevant to that
need can be viewed as random samples from the same underlying generative model. Formally,
an RM is defined as:

RMR(v) = P (v|r1, . . . rm) = P (v,r1,...,rm)
P (r1,...,rm)

where R encapsulates the relevance.
Given a collection of documents C and the vocabulary of terms V , for a given vocabulary

term v ∈ V and document D, they define:
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P (v|D) = λD
n(v,D)
|D|

+ (1− λD)P (v|C)

where n(v,D) is the count of the word v in the document, |D| is the document length, and
P (v|C) is the background probability of v (presumably this is the frequency of v in the whole
corpus C).

Then, they call pseudo-relevance feedback (PRF) a set F of documents derived from the
query, and use them as an approximation of R. Assuming the query terms are independent,
the authors recall a notion of relevance of a term for a query introduced in prior work:

RMF (v) ≈ P (v|Q) =
∑
D∈F

(P (D) · P (v|D) ·
∏
qi∈Q

P (qi|D))

Then, the score of a document D ∈ C is based on its cross-entropy from the relevance
model RMF , defined as:

H(RMF ||D) =
∑
v∈V

logP (v|D) ·RMF (v)

3.1.22 • SPARK2: Top-k Keyword Query in Relational Databases,
2011 [24]

Type of data: Relational databases.

Problem: Their queries accept AND as well as OR semantics (AND here must have all
keywords, and OR may have all keywords, default is OR).

Answer: The result of a keyword search query is a tree, T , of tuples, whose leaf nodes contain
at least one keyword, this is also called a JTT (joined tuple tree). The size of a JTT is the
number of nodes in the tree.

Ranking function: The same as in the previous SPARK work; the contributions here are
more related to algorithms that solve the problem.

3.1.23 • Fast approximation of Steiner trees in large graphs,
2012 [25]

Type of data: They work on an undirected, unweighted graph, assumed connected
(they say the approach can be extended easily to directed, weighted graphs).

Problem: They work on an undirected, unweighted graph, assumed connected (they
say the approach can be extended easily to directed, weighted graphs). Given a set of nodes,
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the ideal answer is the minimal-size Steiner tree (the one with the fewest edges) connecting the
give nodes.

Answer: The ideal solution is the smallest Steiner tree (the one having the fewest edges).
Since it is hard to find, they seek to find approximations by exploiting hubs in the graph, and
indexes.

Ranking function: The (only) solution they find is a Steiner tree "as small as possible".

3.1.24 • Language models for keyword search over data graphs,
2012 [26]

Type of data: Graphs.
In the graphs, nodes and edges have three semantic fields: title field, which comprises name

and types attributes; content field, which comprises all attributes and their values; and structure
field, which comprises the value of the type attribute as well all other attributes without their
values.

Problem: Keyword search on the content fields of nodes or edges.

Answer: Answers are nonredundant subtrees containing that include the given keywords.

Ranking function: Their ranking function is based on a language models, as follows. The
probability that a query Q = (q1, ..., qn) is generated by a field f of an answer A is:

P (Q|Af ) = ∏
i ((1− λ) ∗ P (qi|Af ) + λ ∗ P (qi|Q))

Where the probabilities in the right side are calculated using the maximum-likelihood esti-
mate as follow:

P (qi|X) = tf(qi, text(X))∑
t∈text(X) tf(t, text(X))

Here tf is the term frequency and text(X) is the text related to X, this is all the text of
nodes and edges from X concatenated.

Normalizations: For this part, the paper considers that ranking will use the probability
of language models and the weights of semantics connections together, then these two measures
have to be normalized to [0,1]. As lower semantic weights mean more correlation, this pattern
will be used also for the probabilities that will be inverted and normalized as follow:

First probabilities in log form to avoid underflow:

R(Q,Af ) = ∑
i ln((1− λ) ∗ P (qi|Af ) + λ ∗ P (qi|Q))

where f is a field such as content or title. And the inversion and normalization used is:
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lscrir(Q,Af ) = 1− 1
ln(−R(Q,Af ) +Rmax + 2.781)

where Rmax is the maximum find in the top K solution founded and lscr is to emphasize that
lower scores are better. For the final score for the language model, a linear combination of the
content and title fields is used:

lscrir(Q,A) = α ∗ lscrir(Q,Atitle) + (1− α) ∗ lscrir(Q,Acontent)

Graph Weights: For the weights of the graphs, there are two criteria, semantic strength
(static weights) and relevance to the given query (dynamic weights)

Static weights of nodes: For the static weights of nodes, they consider nodes with grater
in-degree are more important and used the next formula:

w(v) = 1
ln(1.718 + idg(v))

And for isolated nodes or nodes with no incoming edges, the value 1 is assigned.
Static weights of edges: For this one we consider the uniqueness of an edge, for describe

this, they’ve used the concept of a similar edge as one edge with one of its endings be equal and
the other ending of the same type. And the weight for an edge e = (u, v) with fdg(e) being
similar to e and starting in u, and tdg(e) being the similar edges of e ending in v, e is counted
in fdg and tdf , is:

w(e) = 1− 1
ln(0.718 + fdg(e) + tdg(e))

Dynamic weight of edges To generate answers for a query Q = (q1, ..., qn), a node is
created for each qi and connected to all nodes v that contains this word. If the word appears
on the structure field of v, the weight of the edge e from qi to v is 0, if qi does not appear in
the structure field the weight for the edge e is the same as the l-score of v with respect to the
whole query Q as given by lscrir(Q,A).

Scoring Answers
For the structural weight of a an answers, they define W (Q,A):

W (Q,A) = ∑
v∈V w(v) + ∑

e∈E w(e)

Then this formula needs to be normalized before being added to the IR l-scores, with the
following normalization:

lscrs(Q,A) = 1− 1
ln(W (Q,A)−Wmin + 2.718)

For the final score we combine the IR l-score with the structural l-score with a linear
combination:

lscr(Q,A) = β ∗ lscrr(Q,A) + (1− β) ∗ lscrir(Q,A)
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3.1.25 • Scalable Keyword Search on Large RDF Data, 2014 [27]

Type of data: They work on RDF graphs, which they assume to be very regular: entity nodes
are typed by having attached type nodes and they also have keyword nodes.

Problem: They work on RDF graphs, which they assume to be very regular: entity nodes
are typed by having attached type nodes and they also have keyword nodes. It is not clear if
a keyword node can have keywords (if it is possible to have some attributes but lack a type –
doesn’t seem so).

Answer: Given a set of keywords, an answer is a root node plus a set of nodes such that each
node matches one of the query keywords and the root is reachable from all the keywords (this
is what they write, but later on they want the root to reach all the keywords; judging by the
examples, they appear to consider the graph undirected).

Importantly, they also add that there only consider one answer per root node (other
previous papers also did it the same assumption).

Ranking function: The score of a result is the number of edges it contains.

3.1.26 • Match-Based Candidate Network Generation for Key-
word Queries over Relational Databases, 2018 [28]

Type of data: Relational databases.

Problem: Keyword search.

Answer: In keeping with the prior literature, an answer is a joining network of tuples.

Ranking function: They first manually generated golden standard answers for all queries of
the datasets, based on the available query descriptions, then (post-hoc) computed result quality
as the mean average precision with respect to the hand-made golden standard.

3.1.27 • Root Rank: A Relational Operator for KWS Result
Ranking, 2019 [29]

Type of data: Relational databases.

Problem: Keyword search.

Answer: The notion of an answer in this paper is the same as that for Spark (Section 3.1.12).
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Ranking function: The scoring scheme is the same as what has been proposed by the
Labrador system (Section 3.1.15). Notably, they identify this scoring scheme to have Result Set
Dependent (RSD) characteristic, that is, the distribution of keywords in the query results in-
fluences the ranking. The contribution of the paper is an implementation of the scoring scheme
as an operator named Root-Rank, to be used after the join operator in a relational DB.

3.1.28 • Operator implementation of Result Set Dependent KWS
scoring functions, 2020 [30]

Type of data: Relational databases.

Problem: This paper is an extension of previous work by the authors [29] (refer Section
3.1.27). The notion of an Answer and Answer Score remain the same. They implement and
integrate one more operator named Join-Rank. The Join-Rank operator was introduced at the
top of the query execution plan tree to perform concurrently the ranking process of the top-k
results and the topmost join, this provides improved performance compared to the previous
Root-Rank operator of their previous paper.

Answer: Same as the previous work by the authors [29] (refer Section 3.1.27)

Ranking function: Same as the previous work by the authors [29] (refer Section 3.1.27)

3.1.29 • Graph-based keyword search in heterogeneous data sources,
2020 [1]

Type of data: This work considers graphs that are built out of different kinds of data sources
(relational, XML, JSON, RDF, etc.). The graphs are enriched through information extraction:
when an entity is identified in a string, an entity node is created as a child of the string node,
connected to it through an extraction edge. Edges have a confidence (for most, this is 1.0, but
it can also be smaller). Further, nodes in the graph can be equivalent, while retaining different
IDs (each ID reflects the data source where the node comes from and the position of the node).

Problem: Keyword search.

Answer: An answer is a minimal tree (set of edges connected together in a tree), matching
all the query keywords. An edge can be taken in its original or in the opposite direction. The
tree root is not significant. As usual, minimality means that removing an edge should make
the tree miss one or more keywords. A further condition is that if a keyword is matched by
two nodes in the tree, the nodes should be equivalent. It is possible for the same keyword to
be matched by two nodes that are just similar but not equivalent.
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Ranking function: They score is:

score(t, Q) = α ·ms(t, Q) + β ·∏e∈E c(e) + (1− α− β) ·∏e∈E s(e)

where 0 ≤ α, β ≤ 1, 0 ≤ α + β ≤ 1 and:

• The matching score ms(t) reflects how well its leaves match the query terms.

– It is computed as the average of the match quality of t for each query keyword k,
denoted ms(t, k).

– In turn, ms(t, k) is the mean of the score of each tree node or edge wrt k.
– The score of one node (or edge) wrt k is computed using a lexical distance between

the node (edge) label and the keyword k. The distance function used is Levenstein
if the mean length of (label+keyword) is at least 10, and Jaro otherwise.

• c(e) is the confidence of an edge e;

• For a given node n and label l, let N l
→n be the number of l-labeled edges entering n, and

N l
n→ the number of l-labeled edges exiting n. The specificity s(e) of an edge e = n1

l−→ n2
is defined as:

s(e) = 2/(N l
n1→ +N l

→n2).

The weights α, β are provided by the user. By default, α = β = 0.2.

3.1.30 • Efficient Computation of Semantically Cohesive Sub-
graphs for Keyword-Based Knowledge Graph Exploration [31], 2021

Type of data: They work on (directed) RDF graphs.

Problem: Keyword query.

Answer: An answer is a minimal tree whose leaves contain all the keywords. (They also say
that this could be extended to have matches on edges by transforming the graph so that all
the edges are unlabeled, and each original labeled edge becomes a new labeled node.)

Ranking function: They introduce:

• A node weight function wt which maps any node to a real, non-negative number

• A semantic distance function sd which maps any pair of nodes to a real, non-negative
number. This distance can be orthogonal with respect to the graph structure, i.e., it can
be based on their labels, the linguistic context surrounding them, or anything else.
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• The total cost of an answer T = 〈VT , ET 〉 as:

cost(T ) = α
∑
v∈V>T wt(v) + (1− α) ∑

vi,vj∈VT ,i<j sd(vi, vj)

With this, their problem statement is to find the minimum cost tree according to the above
cost function. They call this the quadratic Group Steiner Tree Problem (GSTP) because
there is the quadratic term in the cost formula. They say this problem is also NP-hard.

They provide two approximate algorithms for this: one with approximation ratio O(m2)
(and computational cost in O(m|V |3|E|+m3|V |4)), and another one with (g− 1)2|V | approxi-
mation ratio - this is so bad it’s almost comical - but which runs faster in practice (even though
the worst-case complexity is the same).

3.2 Conclusion

In the above, we have shown that the literature comprises a large number of proposals for
keyword search on graphs. The graphs are either native (RDF graphs, property graphs, Entity-
Relationship graphs, weighted graphs, etc.), or are graph views of other kinds of data: the most
popular models are relational and XML, but JSON, CSV, and other formats have also been
considered.

A query in these proposals is a set of keywords, with (in a majority of works) AND semantics
(all keywords must be matched in a result). A few proposals enlarge this perspective to also
consider OR semantics (some keywords are optional).

For what concerns the answers, in a wide majority of proposals from the literature, answers
are trees consisting of nodes and edges from a graph; on the contrary, a few works return
subgraphs that are not trees, based on the idea that a graph provides more information on how
nodes are related.

Finally, each scoring function is an attempt to map goodness (from the perspective of
answering an information need) with criteria that can be measured/computed on each answer.
As we have shown, the main ingredients for scoring functions are: matching quality, IR-style
components such as TF/IDF, graph scores such as PageRank, more advanced linguistic models,
and metrics, etc.

There has been no comprehensive comparison of the quality (appropriateness) of these scor-
ing functions so far. Several reasons for this can be identified:

• It is inherently difficult to estimate IR result quality: this requires human judgment.

• The database community (which has produced most of the above work) for such quality-
oriented studies does not have a strong culture in quality evaluation. Indeed, an over-
whelming majority of the experimental validations performed in the above works focus
only on the speed at which answers are found.

• Different authors may have had in mind different notions of what a "good result" is,
making comparisons inherently difficult.
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• The differences in the nature of results targeted by different works (trees, graphs, SQL
queries, SPARQL queries...) are also complicating the comparison task.

• Last but not least, the "artefacts" of each kind of data graphs (e.g., RDF graphs look
quite different from relational databases viewed as graphs) also make the comparison
challenging.

In this context, our literature survey above aimed to gather the various methods and ideas
in a single place, to facilitate the discovery of the literature as well as future work in the area.
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4
EFFICIENCY ON BENCHMARKS

In this section, we report on efforts we carried to evaluate the effectiveness of ConnectionLens
on an existing benchmark for keyword search [32]. While all the works surveyed in the previous
section had an experimental evaluation, they used various datasets and evaluation metrics,
therefore their results are not really comparable.

The benchmark introduced in [32] is defined over relational databases, thus it can be seen as
a particular case from the perspective of ConnectionLens. However, because it is the first (and,
to date, the only) systematic comparison, and because ConnectionLens does aim at covering
also relational databases, we found it useful to see how ConnectionLens measures on it.

Below, we start by reviewing the content in the paper [32]. Then, we describe: how the
methodology they created was very insightful; the difficulties we encountered running the bench-
mark queries in ConnectionLens; finally, how ConnectionLens performs compared to the other
systems presented in the paper.

4.1 A framework for evaluating database keyword search
strategies, 2010b [32]

This paper proposes a benchmark dataset for evaluating keyword search algorithms. It also
performs a comparative evaluation of various previously proposed keyword search algorithms,
specifically those covered in Sections 3.1.1, 3.1.2, 3.1.6, 3.1.8, 3.1.10, 3.1.12, 3.1.13, 3.1.14,
3.1.20. They categorize existing systems into two types, depending on their ranking approach:
proximity-based search (and ranking), vs. Information Retrieval style ranking.

To evaluate a keyword search algorithm, the authors consider the following four metrics:

1. The number of top-1 relevant results is the number of queries for which the first
result is relevant. Here, a set of relevant results is for each benchmark query is manually
established by the authors and comes as part of the benchmark.

2. Reciprocal rank is the reciprocal of the highest-ranked relevant result for a given query,
which is the inverse of the numerical position, i.e. if the first relevant answer is in the
first place the reciprocal rank is 1.0, if it’s in the second place 0.5, and so on.

3. The average precision for a query is the average of the precision values calculated after
each relevant result is retrieved (and assigning a precision of 0.0 to any relevant results
not retrieved).

4. Mean average precision (MAP) averages the average precision values across infor-
mation needs, to derive a single measure of quality across different recall levels and infor-
mation needs.
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Additionally, they also measure the correlation between the results returned by the var-
ious systems by computing the normalized Kendall distance. The Kendall distance between
two permutations is the number of pairwise swaps needed to convert one permutation into the
other.

Their conclusions are:

1. IR-style ranking schemes prefer larger results that contain additional instances of the
search terms, to smaller results matching the query. Hence, they fail for queries with
exactly one relevant answer.

2. Scalability remains a significant concern for the proximity search systems. Most such
systems are unable to converge on large datasets.

3. IR-style scoring functions (particularly the scheme described in Section 3.1.6) outperform
the proximity search systems on graphs with large text labels, because their scoring
functions were designed for lengthy unstructured text. The only exception is the BANKS
system (Section 3.1.1), whose ranking, based on node prestige and edge weights, roughly
captures the best of both worlds.

4. The results from compared systems are only moderately correlated at best.

We looked for the benchmark itself but the link in the paper is broken as the Ph.D. author
has finished his Ph.D. and left his lab. Then we found https://joel-coffman.github.io/
resources.html.

4.2 Insightful ideas

Some insightful ideas about this paper could help the development in the field and they were
very useful in this work.

• The authors noted divergences in existing experimental evaluations across the published
papers;

• They proposed a methodology to evaluate retrieval effectiveness and repeating evaluations
from existing papers;

• Many existing techniques showed did not scale on moderately size datasets.

• The authors note that TREC, the Text Retrieval Conference, significantly improved their
field through proposing a standardized evaluation, thus their proposed benchmark has
similar ambitions for their respective field.
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4.3 Benchmark methodology

In accordance with the IR literature [35, 36], the authors of [32] built a set of 50 information
needs, 50 being considered in the IR field a traditional minimum for a comprehensive evaluation
of a search system. Following [35], they argue that using a representative of real-world queries
is more interesting than drawing them at random because randomly chosen queries usually do
not reflect the distribution of real users’ information needs. To this goal, the authors have first
picked a set of topics that could interest users of the system holding a certain database, then
try different queries related to the same topic.

They repeat the process of evaluation on 50 different queries in three different datasets, to
avoid results that are too dependent on a particular dataset. They apply a binary relevance
assessment, where each returned result is classified as either relevant or nonrelevant. The
authors prefer this simple evaluation to a more fine-grained one where some results may be
considered more interesting than others, in order to avoid the subjectivity inherently present
in such interestingness assessments.

The three datasets they introduced are:

• Mondial: a collection of geographical and demographic information.

• IMDb: information about movies, their actors, directors, etc. As this dataset is rather
large, the authors have taken some steps to shorten it, as they describe in the paper.

• Wikipedia: this is a set of 5500 Wikipedia articles, structured in a relational database
reflecting the articles, the users, and links between pages.

The metrics explained in Section 4.1 are computed for 50 queries on each dataset, for the
top 1000 results of each system.

4.4 Difficulties encountered

4.4.1 • Data loading
The author’s Web site https://joel-coffman.github.io/resources.html provides rela-
tional database dumps, together with answers for each query, and topics together with all
their expected relevant answers. The database dumps separated the schema from the data file.
We were initially not able to load the data, after having loaded the schema successfully. After
investigation, we find that the schema included primary key - foreign key constraints that were
creating cyclic dependencies between the different tables to load. The final solution to im-
port data was to first import the data without any of the primary key-foreign key constraints,
thus eliminating the cyclic dependency, and then adding the constraints back to the resulting
database.

Once these issues were solved, trying the benchmark on ConnectionLens has exposed several
problems:
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Listing 1: Answers proposed by the benchmark paper to the queries "Thailand" and "Mongolia
China" on the Mondial dataset

# tha i l and
( [ 3 4 9 4 ] , [ ] )

# mongolia china
( [ 3 500 , 3477 , 110 ] , [ ( 1 10 , 3500) , (110 , 3 477 ) ] ) # borders

1. The system scaled poorly when loading relational data. This is because that part of the
code, developed in 2018, had since not been improved; it has been tested for correctness,
but not for performance. Indeed, recent datasets built in ConnectionLens [37, 38] stress-
tested the JSON, HTML, XML, and RDF ingestion, but not the relational one.

2. The system was unable to handle cases where a primary key - foreign key consisted of
more than one attribute. Conceptually, from the graph search perspective, this should
not make any difference, but concretely, the ConnectionLens code failed to accommodate
some of the benchmark data where several attributes formed a key together.

These issues were exposed due to my internship, and they have consequently have been
fixed by the team, improving the overall quality of the software. However, they have slowed
down my work to some extent.

4.4.2 • Comparing answers
Since the benchmark has been designed for relational data, an answer in their framework is
not a tree, but rather a Joined Tuple Tree (JTT). Within ConnectionLens, each tuple leads to
a graph node, and there are edges between the nodes connected by primary key - foreign key
nodes. However, some post-processing is needed to go from a ConnectionLens tuple-derived
node to the relational database tuple that is part of the benchmark’s expected solution. Note,
for instance, that some attributes of a tuple part of a benchmark JTT may not be present at
all in the CL answers, that have finer granularity (in particular, an answer may include a tuple
node and a node issued from one of its attributes, but not the whole tuple).

To overcome this difference, I inspected all answers myself and considered some adaptations
as valid for each answer. This is illustrated by the examples below.

Listing 1 shows two sample queries, proposed and the benchmark’s gold standard answers
for them In parenthesis there are two arrays corresponding the first to nodes, and the second
to edges. The number inside the brackets for nodes are row counts saying where a rows come
from (in the dataset); the pair of indexes inside the brackets of edges correspond to the nodes
connecting the edges.

The first example in the listing 1 is the query "Thailand". The referenced answer here is just
a tuple node. In Figure 5 there is also just one node, thus, clearly, the answers are equivalent.
The difficulty in automatizing this check is to retrieve the index of the tuple in the original
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Tree 0, score: 1.0, 0 edges

 Thailand (Root) 

 10668@ds1

 Rel. value

Figure 5: Graphical answer to the query "Thailand" in ConnectionLens from Mondial dataset

Tree 10270, score: 0.2611111111111111, 4 edges

   

 36530@ds1

 Rel. struct

 Mongolia 

 34364@ds1

 Rel. value

name 36537 c: 1,00 s: ,67

  (Root)  

 943@ds1

 Rel. struct

country1 153401 c: 1,00 s: ,50

   

 36293@ds1

 Rel. struct

country2 153740 c: 1,00 s: ,13

 China 

 36300@ds1

 Rel. value

name 36301 c: 1,00 s: 1,00

Figure 6: Graphical answer to the query "Mongolia China" in ConnectionLens on the Mondial
dataset. The topic of this query is the borders between countries.

dataset. When data is imported to ConnectionLens, all the information in a row is separated
into different nodes, making it difficult to compare answers3.

The second query "Mongolia China" illustrates also a second issue we encountered. The
figreffig:mongoliachina shows the equivalent answers I proposed to be the same as the one pro-
posed by the author, since the author just uses tree nodes, two for country rows and one for
the border that links those previous countries, and the two edges between the three rows. In
ConnectionLens, the solutions use 5 nodes and 4 edges, since the connection between informa-
tion is made undirectly, through a foreign key. In this case, the node of the border is connected
through two nodes (labeled country1 and country2) to the nodes that matched "Mongolia" and
"China".

To run the benchmark on ConnectionLens, I decided to accept the answers in Figures 5 and

3It is slightly ironic that the authors of [32] also wrote that they have not tried to re-implement some systems
to be compared, because that seemed too difficult.
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6 as correct, since they reflect the best possible correspondence that ConnectionLens can find
for the benchmark’s gold standard answer. Finally, I have manually checked all answers.

4.4.3 • Issues uncovered in ConnectionLens’ query answering
As part of the effort involved in meaningfully running the benchmark, I studied every query
of every dataset to check if they worked as predicted or not. This lead to identifying a set of
issues to find the answers for each query and improve the system to address these issues. We
explain these below.

Figure 7: Two sample answers on the Mondial dataset with the query "panama oman".

• The topic "Countries belonging to the same organization" on the Mondial dataset has led
to some queries such as "panama oman" and "poland cape verde organization". On such
queries, ConnectionLens does not return the best answer first. For instance, Figure 7
shows two answers and their respective scores. Intuitively, the top answer is the one
we prefer, since it uncovers an interesting connection between tuples, specifically, going
through the country table. However, ConnectionLens does not rank this answer first; it
gives it a slightly lower score than the answer shown underneath. We identified two types
of issues.

– It happens that the edge specificities going through this WFTU (The World Fed-
eration of Trade Unions) have also have a low specificity. Indeed, WFTU has 112
members, thus, 112 edges enter the node labeled "WFTU". Further, it turns out that
there are 59 foreign keys labeled "country" pointing to Panama, in this dataset; this
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also leads to a rather low specificity of those edges. The top (intuitively, better) an-
swer chains two organization edges with two country edges, therefore, the specificity
component in the score of this answer is quite low. This highlights that specificity
alone does not suffice to identify the most interesting answer in this case.

– The second issue is that the terms used to match a country name may match other
database nodes, e.g., provinces, and answers that go through the province node may
get a higher score due to lower specificity of the edges.

• Artist names in IMDb: Most artist names consist of two terms, e.g., "Julia Roberts". Here
the issue when we are looking for the top-1 metric is that the node with the solution is
labeled as "Roberts, Julia", but there are many other nodes with similar text, e.g., quotes
that refer to the name of this artist, or a similarly named artist, e.g., we encountered
"Roberts, Julia M.", which is distinct from the desired node. This is an issue caused by
the similarity the algorithm calculates to each label to the query keywords, which makes
the algorithm accept "Roberts, Julia M." as being as good (or better than) "Roberts,
Julia". There are two possible solutions: the first would be to refine the similarity score;
the second one would be to introduce a notion of node prestige (or ranking) in the score
function.

• Stop words in the query: This is a problem that occurred a lot for quotes or movie names
in IMDb, for example, the "lord of the rings". In ConnectionLens, stopwords such as
"the" are not indexed, and as a consequence, ConnectionLens finds no answers for queries
containing them. Several solutions to this could be envisioned.

– The ConnectionLens query module should be modified to internally replace such a
query with "lord rings", i.e., remove the stop words. This has not been done until
the end of my internship.
This is the best adaptation that could be envisioned between the benchmark’s set-
ting, and ours. However, this would turn a sequence of words into a smaller set of
words and thus, presumably, alter some of the benchmark authors’ intent.

– Alternatively, ConnectionLens provides an exact search facility where one could ask
to strictly match only nodes labeled "Lord of the Rings". We tried this for a few
examples and could see that this enabled ConnectionLens to find some results. Yet,
this also modifies the intent of the benchmark and only works when 1 graph node is
labeled with the exact query terms (not in the more general case).

4.5 Benchmark result and evaluation

Recall that the score function used by ConnectionLens for scoring the answers trees was ex-
plained in 2.4.2. The benchmark metrics which allow measuring the quality of a given system
were described in Section 4.1. Since the verification was made manually, because of the incon-
sistencies explained in Section 4.4.2, the mean average precision (mAP) and average precision
were not calculated, since this was too tedious for 550 queries.
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Mondial Topics 1-50
Top-1 R-rank

ConnectionLens [37] 39 0.780
BANKS [3] 16 0.358
DISCOVER [4] 31 0.671
Efficient [13] 21 0.514
Bidirectional [10] 34 0.730
Effective [12] 22 0.495
DPBF [16] 37 0.823
BLINKS [15] 36 0.770
SPARK [14] 27 0.607
CD [22] 36 0.804

Table 1: Mondial results for top-1 score and the reciprocal ranking. All but ConnectionLens
results are from [32].

Datasets Mondial IMDb Wikipedia
Topics 1-20 Topics 1-20 Topics 1-15

R-rank 1.0 0.5 0.503

Table 2: Reciprocal rank attained by ConnectionLens on each dataset of the benchmark.

4.5.1 • Results
The tareftab:mondialresults shows results of ConnectionLens on the 50 benchmark information
needs of the benchmark, compared to the systems studied in [32], on the Mondial database.
These are very good results: they show that ConnectionsLens is the best in terms of Top-1
results, and the second in terms of reciprocal ranking. This shows that in terms of the score
function, with some modest additions, ConnectionLens could perform very well.

Figure 8 recalls the performance of the systems under test in [32]. For what concerns
ConnectionLens, Table 2, shows that: ConnectionLens was the best in terms of reciprocal
ranking for Mondial database for the 20 first queries compared to other systems; it also has
reasonably good efficiency on IMDB where it was the third better system (but very far from
the two best systems); finally, on the Wikipedia dataset, the result was quite poor (ranked 6
out of 10).

On IMDB, the lag of ConnectionLens is mostly caused by the stop word issue discussed
above; these appear in 7 queries of the 20 studied in the table 2, and also there are 14 among
the 50 queries. Probably, solving this issue would lead to better results.

On the Wikipedia dataset, the reciprocal performance could be improved as well. Most
answers were founded, however, as the Wikipedia dataset has the description of the pages, the
system identifies the text of a wikipedia page more similar to the query than the node which is
the title of the page. For example, for the query "International English", the targeted keyword
is written as "international_english" and received a score of 0.895, which is a (high) score given
by label similarity computation. However, 2525 nodes received a (higher) score of 1.0, because
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their label contained "international" and "english".

• On one hand, the similarity computation could be improved, not to penalize the under-
score connecting words.

• On the other hand, this would only raise the title’s rank to 1.0 but is insufficient to make
it stand out among with respect to the 2525 other nodes achieving the same, high score.
To go beyond, one would need to incorporate for instance some centrality or PageRank
metric, in order to help the title stand out; or, modify the matching score component in
order to penalize long labels, of which the query keywords are just a tiny part.

Figure 8: Reciprocal ranking on the Mondial, IMDb, and Wikipedia datasets for the first 20,
20, and 15 queries. This image is from [32].

4.5.2 • Conclusion
ConnectionLens has a great performance considering that the score function was proposed for
structured, semistructured, and unstructured data, it’s very impressive that the score function
works as well as other score functions specially designed for structured data.

ConnectionLens worked well, but it still has a very simple score function and has space to
test other solutions or to bring news ideas from other papers, such as the node prestige, or add
proximity search measures to their score function.

A continuation of this work would be to test measures or to introduce techniques in the
score function proposed in 3 and verify if their implementations could improve the results for
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these datasets. Another improvement to test results, would be to find a way to transform the
answers of the benchmark in answers in ConnectionLens since it was very difficult to do the
verifications manually and that would make it possible to calculate the mAP for the datasets,
that’s another measure and is less noise than top-1 and reciprocal rank.
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5
OPTIMIZATIONS IN SEARCH ALGORITHMS

Experiments with ConnectionLens (and in particular, some of the queries of the benchmark
described in the previous Section) highlighted a particular kind of problematic queries. These
occur when one or a few of the query keywords are extremely popular, e.g., "France" in a french-
language corpus. GAMSearch, like any similar algorithm, grows exhaustively trees starting from
the nodes that match each keyword. When one or a few query keywords have a huge number
of matches, this entails that a lot of effort will be spent searching trees from these matches.

1. If every query keyword matches a very large number of answers, we are simply confronted
with a huge search space, and there is not much we can do to help.

2. In contrast, if some query keywords match very few nodes, one could privilege search
starting from these rare keywords, that is: invest more effort exploring the neighborhood
of these "rare" matches, in the hope that we will encounter matches for the other query
keywords. An sample rare keyword could be "intergouvernementalisations", which is the
longest known French word4. If answers of moderate size exist, starting from this rare
word is likely to encounter a node matching France. In contrast, not all the (many) nodes
matching France are likely to have this word in their neighborhood, thus, search effort
would be wasted if we exhaustively explore those.
If, on the other hand, no such answers exist, we are no worse off than if we explored from
all the matches with equal probability.

In this section, we describe a heuristic we proposed, aimed at improving performance in
case 2. above.

As described in the section 2.4.1, the GAMSearch algorithm uses a priority Queue PQ as
an auxiliary data structure to find the answers trees. PQ is filled with (tree, edge) pairs, such
that the edge can be used to Grow a larger tree. To implement our heuristic, for a query of m
keywords, assuming each keyword wi is matched by Ni graph nodes, we create 2m − 2 priority
queues, instead of a single one, one priority queue for each non-empty subset of the keywords
(other than the complete query). For instance, if the query consists of keywords a and b, we
create one priority queue for {a} and the other for {b}; for a query with three keywords, we
would create priority queues for {a}, {b}, {c}, {a, b}, {a, c} and {b, c}, respectively. Based on
these, when the algorithm runs, instead of applying Grow on the pair at the top of the single
queue PQ, we first select the queue with the smallest size (fewest entries). As long as one or a
few of the keywords appear in fewer trees compared with more popular keywords, they will be
prioritized.

This idea has been implemented as a new algorithm, called OptiGAM, as a branch in the
ConnectionLens project.

4Source: Wikipedia, see shorturl.at/gsyQU
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5.1 Experimental validation

This optimization has been implemented towards the end of my internship and we were able
to validate it only towards the end of the internship period. For the purpose of this validation,
we decided to generate some synthetic graphs, controlling the following parameters:

• The total size of the graph;

• As a simplification, we focused on queries with just two keywords (a generalization would
be easy). We want to control the number of nodes matching each keyword. We assume
that the graph matches much more keywords than just the query keywords.

Further, we wanted a graph shape that makes it possible to reason at least approximately
on the sizes of the search space, in order to understand the algorithm behavior.

For this purpose, we proceed as follows.

1. We generate XML documents with a controlled and rather simple structure.

(a) Each tree root has N children, each of which is a full binary tree of depth d (counting
node levels). Thus, there are N × 2(d−1) leaf nodes.

(b) Among the leaves, Na are labeled alpha, and Nb are labeled beta; all the other leaves
are labeled with random strings of length 3.

2. We ingest such a document in ConnectionLens, leading to a single graph.

The total number of nodes in such an XML tree is very easy to compute from N and d.
Further, the query {alpha, beta} has exactly Na×Nb results; each result is of size 2× (d−1)+2
since it needs to go from a leaf labeled alpha to the root, and from there down again to a leaf
labeled beta. Every intermediary tree developed by GAM (or OptiGAM) is a path from one
of the leaves labeled alpha or beta, toward another node of the tree. If the algorithm runs to
completion, all such paths will be developed.

Figure 9 shows a sample XML document generated in this way with N = 6, Na = 1, Nb = 3,
and d = 3.

5.2 Experimental results: GAM vs. OptiGAM

In our experiments aiming to compare GAM and OptiGAM performance, we have used syn-
thetic graphs generated from XML documents where we set N = 100.000 and d = 2. This
leads to graphs with 500.001 nodes (the root, 100.000 children of the root, 200.000 children of
these, and 200.000 value leaves). Each solution involves 6 edges. These size parameters were
chosen based on our experience with ConnectionLens, to make things challenging for the search
algorithm. Further, to study the impact of the difference of frequency among the different key-
words, we varied Na and Nb; we have considered query answering until the first, respectively,
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Figure 9: Sample synthetic XML document.
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the first 100 answers are obtained. In all cases, both algorithms ran with a timeout of 100
seconds.

Search space On this simple type of documents, we can enumerate (and measure) the search
space, that is, the trees that GAM or OptiGAM need to build before finding all solutions, as
follows:

• S0 is a set of Na +Nb trees of 1 node

• S1 is a set of Na +Nb trees of 2 nodes (each matching leaf with its parent element)

• S2 is a set of Na+Nb trees of 3 nodes (each matching leaf with its parent and grandparent
elements; each grandparent is a child of the root)

• S3 is a set of 2× (Na +Nb) trees (each tree from S2, together with the other child of its
root, and then with this child and its leaf node)

• S4 contains: for each S2 tree, a one edge larger tree that goes to the document’s root
element; further, each such tree can grow by one, then another edge toward the actual
document root and the node indicating the original document URI. Thus, the size of S4
3× (Na +Nb).

• S5 contains: for each S4 tree rooted in the root element labeled elem0:

– (Na+Nb)×(N−1) trees going down one edge, towards a different sibling, an element
labeled elem1;

– based on the above, 2× (Na + Nb)× (N − 1) trees going one further edge down to
an element labeled elem2;

– finally, 2× (Na +Nb)× (N − 1) trees going one further edge down to a leaf. Na×Nb

among these are solutions.

Overall, the size of the search space which contains the sets S0 to S5 described above is:

(Na +Nb)× (1 + 1 + 1 + 2 + 3) + (Na +Nb)× (N − 1)× (1 + 2 + 2) =

(Na +Nb)(8 + 5× (N − 1)) = (Na +Nb)× (5×N + 3)

which is of the order of 5× (Na +Nb)×N .

Hardware configuration The experiments were run in a machine with a processor Intel®
Core™ i5-8265U CPU @ 1.60GHz × 8, a memory RAM of 16 GB, and the operating system
Linux Ubuntu 20.04.

Table 3 shows the results for k = 100. For Na = 1, GAM struggles and doesn’t find any
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Searching for the first 100 answers (timeout: 100.000 ms)
GAM OptiGAM

Na Nb Search Space Time (ms) results Time (ms) results

1
100 50.500.000 Timeout 0 Timeout 94

10.000 5.000.500.000 Timeout 0 50.772 100
100.000 50.000.500.000 Timeout 0 Timeout 0

1.000

1.000 1.000.000.000 Timeout 6 Timeout 9
2.000 1.500.000.000 Timeout 4 Timeout 9
10.000 5.500.000.000 Timeout 0 Timeout 9
100.000 50.500.000.000 Timeout 0 Timeout 0

Table 3: Search until finding the first 100 answers or reaching a timeout of 100 seconds
(whichever happened first), for different synthetic documents, using GAM and OptiGAM. In
gray the executions that were unsuccessful (no result returned before the code stopped).

answers before the timeout. For Na = 1.000, with a lower (or no) imbalance between keyword
frequencies in the graph, GAM works better (at least some solutions are found), and OptiGAM
is no worse than it.

In comparison, OptiGAM significantly outperforms GAM for Na = 1, retrieving most of
the answers before the timeout for Nb = 100 and 100 answers for Nb = 1.000. For Na = 1.000,
OptiGAM still outperforms GAM, finding more answers before the timeout, but the number
of results is very low in comparison to all the possible answers, this will be discussed next.

For Na = 1 and Nb = 100.000, and when Na = 1.000, both GAM and OptiGAM perform
poorly, because the size of the search space increases. Still, we see OptiGAM is no worse than
GAM.

Table 4 uses the same graphs as Table 3 but focusing on the time to the first answer.
For Na = 1, OptiGAM confirms its advantage. An interesting observation is that this holds

even for Na = Nb = 1 where in principle we expect no difference. A possible explanation could
be that having 2 smaller priority queues is more efficient than using a single one, given the
large size it reaches. For Na = 1.000, OptiGAM is also quite faster; this clearly validates its
interest.

In conclusion, analyzing the Tables 3 and 4 one can conclude that OptiGAM had proven
to be better than the actual GAM search in ConnectionLens, since it had a better or equal
performance for all cases experimented for this report. These answers were not very easy to
find (size 6). However, very large search spaces remain challenging for exhaustive exploration.
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Searching for the first answer (timeout: 100.000 ms)
GAM OptiGAM

Na Nb Search Space Time (ms) results Time (ms) results

1

1 1.000.000 46.502 1 34.359 1
100 50.500.000 Timeout 0 35.350 1

10.000 5.000.500.000 Timeout 0 50.379 1
100.000 50.000.500.000 Timeout 0 Timeout 0

1.000

1.000 1.000.000.000 51.440 1 38.790 1
2.000 1.500.000.000 97.267 1 40.957 1
10.000 5.500.000.000 Timeout 0 51.901 1
100.000 50.500.000.000 Timeout 0 Timeout 0

Table 4: Search until finding the first answer or reaching a timeout of 100 seconds (whichever
happened first), for different synthetic documents, using GAM and OptiGAM.
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6
CONCLUSION

The global focus of my 4 months internship has been query answering in ConnectionLens. First,
the answer ranking aspect that has received less attention so far, and it was my task to see how
good it is and how we could improve. Second, we aimed at making search more efficient for a
family of cases, while not making things worse for the others.

For what concerns the ranking, given that ConnectionLens addresses (and generalizes) prob-
lems previously addressed within separate domains (just relational data, or just XML, or just
RDF, etc.), I had to first gather all the interesting ideas proposed in the (segmented) existing
literature, the efficiency of ConnectionLens, and optimization of the search algorithms. Each
of these topics has its particularities and could be improved in future work.

The literature survey can be very helpful for researchers in the field, as it summarizes several
papers in one place and describes parts of interest for each of them about the score function.
As future work on this, this effort could be turned into a published survey.

The second part of my work on result ranking consisted of applying ConnectionLens to the
most systematic benchmark built so far, which is based strictly on relational databases. This
has allowed to identify and solve several issues related to this less-used part of the platform.
This work has also allowed to see that ConnectionLens returns good (or the best) answers in
some cases, but also to highlight some of its limitations. In particular, the specificity function
whose goal was to help return non-trivial results does not suffice to always attain this goal. As
discussed in the section 4.5.2, in the future, incorporating some notion of node rank based on
the graph structure and/or on some text frequency statistics could improve its performance.

For the optimization of the search algorithm, the results were very encouraging to use the
adaptation I’ve created to some particular cases I have studied. While the evaluation presented
here is relatively short, it is quite encouraging; OptiGAM appears a very useful adaptation of
GAM. More work is needed to confirm these results on more diverse, real-life datasets.
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