TECNICO
LISBOA

ConnectionLens: Entity and Relationship Extraction from
French textual data sources

Catarina Pinto Conceicao

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Helena Isabel de Jesus Galhardas
Prof. loana Manolescu

needs

to be full
name

September 2020

—Catarina

September

or Octo-
ber?

Abstract

As a result of the large amounts of data digitally available nowadays, journalists are turning their atten-
tion to data processing and visualization, a task called data journalism. In investigative journalism, the
available data is used to find connections between entities and analyze their nature. CONNECTIONLENS
is a software prototype that addresses the investigative journalism’s issues of having data from different
sources and different formats, while allowing keyword-based queries to find connections. To obtain the
entities and connections in textual data sources it is necessary to perform Named-Entity Recognition
and Relationship Extraction. We propose to develop a solution for NER and RE for French news texts
that can be incorporated in CONNECTIONLENS. Our goal is to adapt and make use of tools, more specifi-
cally, third-party libraries, for both NER and RE, to create machine learning models capable of extracting
named-entities and relationships, respectively, from French texts. In addition, to provide a compre-
hensive evaluation of these models using precision, recall and F'1-score for NER, and precision-recall
curves, area under the curve, micro-F'1 and Precision@N for RE. Finally, to select the best perform-
ing models for each task to be integrated in CONNECTIONLENS. The best performing model for NER
achieved an overall F'1-score of 73.31. And, the best performing model for RE achieved an AUC and a

micro-F 1 of 97.10 and 91.78, respectively.

Keywords

Information Extraction, Natural Language Processing, Named-Entity Recognition, Relationship Extrac-

tion, Deep Learning, Distant Supervision

Resumo

As a result of the large amounts of data digitally available nowadays, journalists are turning their atten-
tion to data processing and visualization, a task called data journalism. In investigative journalism, the
available data is used to find connections between entities and analyze their nature. CONNECTIONLENS
is a software prototype that addresses the investigative journalism’s issues of having data from different
sources and different formats, while allowing keyword-based queries to find connections. To obtain the
entities and connections in textual data sources it is necessary to perform Named-Entity Recognition
and Relationship Extraction. We propose to develop a solution for NER and RE for French news texts
that can be incorporated in CONNECTIONLENS. Our goal is to adapt and make use of tools, more specifi-
cally, third-party libraries, for both NER and RE, to create machine learning models capable of extracting
named-entities and relationships, respectively, from French texts. In addition, to provide a compre-
hensive evaluation of these models using precision, recall and F'1-score for NER, and precision-recall
curves, area under the curve, micro-F'1 and Precision@N for RE. Finally, to select the best perform-
ing models for each task to be integrated in CONNECTIONLENS. The best performing model for NER
achieved an overall F'1-score of 73.31. And, the best performing model for RE achieved an AUC and a

micro-F'1 of 97.10 and 91.78, respectively.

Palavras Chave

Information Extraction, Natural Language Processing, Named-Entity Recognition, Relationship Extrac-

tion, Deep Learning, Distant Supervision
(Catarina: need to translate to Portuguese J

Contents

1 Introduction

1.1 Problem Statement e e e e
1.2 Contributions .
1.3 Thesis Outline

2 Background on Information Extraction

2.1 Information Extraction Pipeline o

2.2 Auxiliary Resources e e

2.3 Text Pre-processing o o e e e e e

2.4 Information Extraction Techniques e

3 Related Work

3.1 Named-Entity Recognition

3.1.1

Features

3.1.2 Techniques e e e e

3.1.3

3.1.2.1
3.1.2.2

3.1.3.9

Feature-based Methods

Neural-based Methods

SpaCy . . . e
Apache OpenNLP
NeuroNER

OpenCalais i e

Discussion e e e e

3.2 Relationship Extraction e

3.2.1

Features

3.2.2 Techniques e e e e 39

3.2.2.1 Semi-Supervised Methods 0. 40

3.2.2.2 Distantly Supervised Methods, . 42

3.2.2.3 UnsupervisedMethodso Lo 45

3.23 TO0IS. . o o e e e 48
3.23.1 StanfordOpenlE 48

3.238.2 TextRazor. e 49

3.23.3 IBMWatsonNLU 49

3.234 ReVerb e 49

3235 OLLIE. . . . 50

3.23.6 OpenNRE e 50

3.2.3.7 Discussion e e 51

4 Creating a French NER model 52
4.1 Pipeline . . . o o e e e 53
4.2 Datasets. e e 54
421 WIKINER e 55
42.2 KB EuropeanaNewspapersNER 55
4.2.3 Quaero Old Press Extended Named Entity 56

4.3 Pre-processing i e e e e e e e e e 58
4.3.1 WIKINER . . . e 59
4.3.2 Europeana e e e 59
433 QUEEIO . . . o e e e e e 59
4.3.4 DataExploration e 62
4.3.5 Joiningthedatasets 63
4.3.6 Train, developmentandtestsets, 65

4.4 Evaluation methodology e 65
4.5 Modelselection e e 66
4.5.1 Flair . . o e e 66
452 SpaCy . . . o o i e e e 69

4.6 Modelevaluation e e 71
4.7 Finalmodel creation e 72
5 Distantly Supervised French RE 73
5.1 DBpediaand Wikipedia e 75
5.2 Procedure e 76
5.3 Relationships e e e 77

5.4 Obtaining candidate sentences e e
5.5 Selectingsentences e e

5.6 Training e e e e e e e

Experimental Evaluation
6.1 Named-Entity Recognition
6.1.1 Evaluatedmodels e
6.1.2 Evaluationdataset e
6.1.2.1 Pre-processing o e
6.1.3 Evaluation methodology and metrics
6.1.4 Results e
6.2 Relationship Extraction e
6.2.1 Dataset e
6.2.2 Evaluation methodology and metrics
6.2.3 Trainingdetails e
6.2.4 Experimenting with datasetvariants
6.2.5 Results e

6.3 Integrationin ConnectionLens L e e

Conclusion
7.1 ConcluSiONS o o e e e e e e e e e
7.2 Future Work e e e e

RE Dataset statistics
A1 #entitiespertypeandset L
A.2 #relationship instances pertypeandset. oo oo

A3 #sentencespertypeandset L e

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
43
4.4

6.1

CONNECTIONLENS: Data source collection, virtual graph and a possible answertree . .. 4
Information Extraction Pipeline 13
Parse tree of the sentence "Haifa, located 53 miles from Tel Aviv will host ICML in 2010" . 15
Dependency graph of the sentence "Haifa, located 53 miles from Tel Aviv will host ICML

N 2010 e e e e 15
HMM representation of label sequence computation forasentence 27
MEMM representation of label sequence computation fora sentence 28
CREF representation of label sequence computation forasentence 30
Graphical representation of a typical RNN and an RNN being unrolled 32
Architecture of a BI-LSTM-CRF model 34
Open IE systems’ extractions for the sentence "If he wins five key states, Republican

candidate Mitt Romney will be elected President in 2008" 47
Model creation pipeline e e 54
WIkiNER’s named-entity distribution o o 63
Europeana’s named-entity distribution o oL L, 63
Quaero’s named-entity distribution L o 63
PRcurvesof REmodels e 92

vi

List of Tables

2.1 Example of IOB-1and IOB-2scheme 17
4.1 Dataset’s attributes e e e 63
4.2 Flairs model selectionresults e e 68
4.3 SpaCy’'s model selectionresults e 70
4.4 Model evaluationresults e e e e 71
5.1 REdatasetattributes e 80
6.1 NER evaluationresultson FTBNER 88
6.2 Results of flair-ssf-wikineron FTBNER, 89
6.3 AUC and micro-F1of REmodels e 93
6.4 P@N, AUC and micro-F'1 for different number of sentencesinbags 93

Introduction

Contents
1.1 Problem Statement 5
1.2 Contributions i e e e e 7
1.3 ThesisOutline ittt e e e s i e e e e e 8

Traditionally, journalists focused on gathering data and being the first to deliver news. Nowadays, with the
large amount of data digitally available, journalists are shifting their focus to extracting, transforming and
visualizing data with the goal of having a good story to tell. This data processing and visualization task
is typically called data journalism [1]. When handling large amounts of data, it is crucial to choose what
is of interest and be able to interpret data, thus avoiding to present raw data. Furthermore, investigative
journalism uses available data and tries to find connections between subjects, objects, people (i.e.,
entities) and analyse their nature. There is typically a network of interconnections between those entities
that is not visible. It is the intention of investigative journalism to bring to light these interconnections,
through the analysis of combined data from different data sources.

The set of data sources used in investigative journalism may be heterogenous and independently
produced. Moreover, it is necessary to deal with the changing nature of the data sources because jour-
nalists are always collecting more data with different structure and format. Once the data is integrated,
journalists need to ask queries to find connections. They do not know the exact structure of the data, so
queries are typically keyword-based.

CONNECTIONLENS [2] is a software prototype that was developed to address the investigative jour-
nalism problem described above. This prototype supports keyword search across a set of heterogenous
and independently produced data sources, to find connections. It deals with different types of data
sources, namely JSON documents, text files, RDF graphs and relational tables. CONNECTIONLENS was
developed in the context of the ContentCheck ANR project’ with the French newspaper Le Monde, so it
focuses on French data. It is a collaborative project between the Inria CEDAR team? and AIST Japan®.
Example 1 shows an example of a query that can be answered using CONNECTIONLENS. The example

was raised by Le Monde and taken from [2].

Example 1 In the 2007 National Elections in France, there was a large amount of first-
time National Assembly elected members. Naturally, journalists tried to find as much data
as possible about them. More specifically, they asked "what connections exist between the
elected representatives and companies?". Therefore, they sought to identify direct financial
interests (which must be disclosed by the members), but also indirect connections which
might generate conflicts of interest, e.g., being a close collaborator of a company’s CEO

(which must be discovered by the press).

Taking into consideration Example 1, when posing the following query to CONNECTIONLENS : "En
Marche companies”, connections between elected representatives from the political party "En Marche"
and companies will be found. In particular, Figure 1.1 shows a collection of data sources over which

CONNECTIONLENS will provide an answer to the query, in particular: (i) a JSON data source DS1 with

Thttps://team.inria.fr/cedar/contentcheck/
2https://team.inria.fr/cedar/
Shttps://www.aist.go.jp/waterfront/

Virtual Graph

w » ”
......... origDs” g YR, o OC:organization
? “Ecole

polytechnique”

nDS1.V1
“Philippe Varin"

“Anne Martin”

“Anne “En Marche”

Martin”

“AREVA” “P. Varin"

- - “OC:Person”
sameAs”,c=1.0 “sameAs”, ¢ =.76

DS1 1 DS2 1 DS3

{"deputes": [« Les personnes suivantes ont étudié a
{ Ecole Polytechnique (année 1977):
"name" : "Anne Martin", - Anne Martin Company| President

"party" : "En Marche" - t31| AREVA P. Varin
b - Philippe Varin »

: extracted entities

Journal Officiel
Text data source

French Members of
Parliament database

French companies database
JSON data source Relational data source

Figure 1.1: CONNECTIONLENS: Data source collection, virtual graph and a possible answer tree

National Assembly representatives, (ii) a text data source DS2 from Journal Officiel that contains a list
of the alumni of Ecole Polytechnique (where lots of French company executives studied), and (iii) a
relational data source DS3 of companies and their CEOs.

In CONNECTIONLENS all data sources are mapped into a single virtual graph, as it is represented in
Figure 1.1. Most nodes and edges of the virtual graph come from the data sources. All data sources,
except for the text type, have inherently defined entities and connections, so, defining nodes and edges
is only necessary to map the inherent nodes and connections to the virtual graph. Edges in the virtual
graph can also be links between two nodes (of the same or from different data sources) whose data is
considered to be similar. These are called sameAs links e.g., "Philippe Varin" and "P. Varin".

The answer to a keyword-based query posed to the virtual graph is given in the form of an answer
tree, which is part of the virtual graph. Several answer trees may be returned for a query, each with
an associated score. One possible answer tree for the query "En Marche companies" is represented
in Figure 1.1 by a red line. Each keyword in the query matches a node or an edge in this answer tree.
The answer tree in Figure 1.1 shows a connection between "Anne Martin", a representative from "En
Marche" and the company "AREVA". In fact, in DS1 there is a node representing "Anne Martin" as being
a member of the party "En Marche". This node matches a node "Anne Martin" from DS2, connected by
a "sameAs" link, because the two strings are similar. The occurrence of "Anne Martin" in DS2 means
that she studied in Ecole Polytechnique. "Philippe Varin" also studied in Ecole Polytechnique, as it is
represented by a node from DS2. The company "AREVA" is represented by a node in DS3, whose

president is "P. Varin" also represented by a node in DS3. This node connects to the node "Philippe

Varin" in DS2 by a "sameAs" link because the strings are similar.

A textual data source, such as the Journal Officiel (DS2) in Figure 1.1, is a particularly interesting data
source to integrate. The text is written in Natural Language (French, in this case), that is unstructured, so
it has no pre-defined format or model, unlike a relational database. To obtain the entities and connections
present in a natural language text, it is necessary to perform Information Extraction (IE) [3], in particular,
Named-Entity Recognition and Relationship Extraction.

Named-Entity Recognition (NER) is a typical task of IE that focuses on identifying names of entities
and then classifies them into a pre-defined set of classes, like people, locations, organizations and oth-
ers. For example, in Figure 1.1, consider that NER was performed over DS2 with the goal of identifying
names of entities of the type Organization and Person. "Anne Martin" and "Philippe Varin" would be
detected and classified as Person and "Ecole Polytechnique” as Organization.

Relationship Extraction (RE) is a task of IE that aims at extracting relationships, usually from a pre-
defined set, between the previously identified entities. In Figure 1.1, RE was performed over DS2,
with the goal of identifying the relationship StudiedIn. Given the previously recognized entities, the
relationships (Anne Martin, Ecole Polytechnique, Studiedin) and (Philippe Varin, Ecole Polytechnique,
StudiedIn) would be detected.

The goal of this thesis is to develop a solution for NER and RE for French news texts that can be
incorporated in CONNECTIONLENS.

1.1 Problem Statement

Approaches for performing both NER and RE may consist in using a software tool or implementing a
technique from scratch. Software tools implement techniques and are able to perform the given task
off-the-shelf and/or facilitate its implementation.

Regarding NER, the considered standard techniques are: (i) supervised machine learning and
(73) rule-based. NER is seen as a sequence labeling problem where the goal is to assign a label,
i.e., a named-entity type, to each word in an input sequence of words, e.g., a sentence. Rule-based
methods are easy to implement and interpret, and useful when extracting something with a regular
format e.g. extracting phone numbers. Nevertheless, linguistic knowledge and a lot of work is required
to create a rule-based system. Moreover, supervised methods require an algorithm that will learn from
a considerable amount of labeled data, preferably from the same domain as the data that is going to be
labeled, i.e., news. These methods can be further divided in feature-based and neural-based, and the
latter, currently achieve state-of-the-art results.

The software tools we found available for NER can be: (i) black-box or (ii) third-party libraries.

Black-box software tools are usually a web service made available by an APl. We make a request to

the service with text and it returns the named-entities it was able to extract from it. We typically have no
knowledge of what is happening internally in the system: technique, and possibly the training data, are
usually unknown. Moreover, these solutions usually support a maximum number of accesses per time
period. There are several black-box web services capable of dealing with French, e.g., Open Calais, IBM
Watson NLU*, however the constraints they present are not desired for integrating CONNECTIONLENS.

On the other hand, third-party libraries implement a technique and only require train data to be
given as input to obtain a machine learning model. They also make pre-trained models available, which
are machine learning models already trained and parameterized. Moreover, with pre-trained models,
the technique is known, however, they may have been trained on unappropriated train data because a
different domain of what is to be labeled may have been used.

We found several third-party libraries for NER that implement state-of-the-art supervised neural-
based techniques. In addition there are several freely available datasets in French annotated with
named-entities that can be given as input to those tools to create a French NER model. Some of
the third-party libraries we found, able to perform NER, also make available French pre-trained models,
in particular, Flair° and SpaCy.

In what concerns RE, there are no datasets available, in French, with annotated relationships be-
tween entities. Therefore, we are limited to techniques that do not require manually labeled data. Again,
rule-based methods require a high amount of linguistic, in this case French, knowledge, therefore the
most relevant techniques are: (i) semi-supervised, (i) distantly supervised and (ii7) unsupervised
also referred as Open Information Extraction (Open IE).

The software tools we found capable of performing RE can be categorized the same as the ones
for NER, i.e., black-box and third-party libraries, with the addition of Open IE systems. Open IE
systems implement an Open IE technique, for a given language, that is able to extract relationships from
text given as input. In these types of systems there is not a defined set of relationships types that can
be extracted; the system extracts all types of relationships it is capable of.

We found two tools capable of performing RE for French off-the-shelf: 1BM Watson NLU and a French
implementation of ReVerb. Again, IBM Watson NLU is a black-box web service with constraints and lack
of knowledge not desired for integrating CONNECTIONLENS. Moreover, the French adaptation of ReVerb
is an Open |E system where there is not a defined set of relationships that can be extracted. This is
equally not desired for extracting relationships in CONNECTIONLENS. Regarding third-party libraries,
we did not find any that had French RE models available. Nevertheless, OpenNRE was the only tool
we found that allowed training non supervised models, by integrating training of bag-level RE models, a
widely applied method for distantly supervised RE. Moreover, distantly supervised RE proposes a proce-

dure that automatically creates annotated data for training machine learning models, using relationship

“4https://www.ibm.com/watson/services/natural-language-understanding
Shttps://github.com/flairNLP/flair

instances from a knowledge base (KB), and sentences expressing the relationships, from a text corpus.

Our goal is to adapt and make use of tools, more specifically, third-party libraries, for both NER
and RE, to create machine learning models capable of extracting named-entities and relationships,
respectively, from French texts. In addition, to provide a comprehensive evaluation of these models
using precision, recall and F'1-score for NER, and precision-recall curves, area under the curve, micro-
F1 and Precision@N for RE. Finally, to select the best performing models for each task to be integrated

in CONNECTIONLENS.

1.2 Contributions
The main contributions of this work are as follows:

» The pre-processing of three different French NER datasets, i.e., Quaero Old Press Extended
Named Entity, KB Europeana Newspapers NER and WikiNER, with the goal of uniformizing them
to combine them to have as much information as possible for training. Additionally, data exploration
of each pre-processed dataset was performed, with the intention of learning their characteristics,
namely the number of sentences, tokens and named-entities. In the end the combination was not

possible due to significant errors in some of the datasets.

» The creation of multiple French machine learning models using third-party libraries that imple-
ment neural-based state-of-the-art techniques, i.e., Flair and SpaCy, and trained using the pre-
processed Quaero dataset, divided in train, development and test sets. The models were evalu-
ated using the familiar metrics used to evaluate NER models: precision, recall and F'1-score. The
best performing model out of all was selected, that achieved an overall F'1-score of 82.44 on the

test set of the pre-processed Quaero dataset.

» A comprehensive evaluation of the created and selected model against existing French pre-trained
NER models, and the model previously used in CONNECTIONLENS for French, using the famil-
iar metrics. To impartially evaluate the models we used the FTBNER dataset, which we pre-
processed. According to the results, we trained a final model that outperformed all models with an
overall F'1-score of 73.31 on the FTBNER dataset.

» The creation of a French RE dataset, using distant supervision to automatically build the dataset
using French DBpedia as the KB and Wikpedia articles as the text corpus. We filtered and grouped
the relationships we retrieved from DBpedia and generated negative relationship instances, that
express the non-existence of a relationship. For each relationship instance we collected all sen-

tences where the related entities co-occur.

 The creation of a French RE model using OpenNRE, a third-party library that implements bag-level

training, a widely applied method for distantly supervised RE.

+ Evaluation and experiments with dataset variants for training the French RE model, that we eval-
uated using held-out evaluation, where a part of the relationship instances is "held-out" to create
a test set. We used the following metrics to evaluate the models, that resulted from the differ-
ent variants: precision-recall curves, area under the curve, micro-F'1 and precision@N. The best

performing model presented an AUC and a micro-F'1 of 97.10 and 91.78, respectively.

1.3 Thesis Outline

The rest of the document is organized as follows: Chapter 2 provides background about important IE
concepts. Chapter 3 details the related work, in what concerns NER and RE. Chapter 4 describes the
approach that was took regarding NER, in particular, how we created our French NER model. Chapter 5
is dedicated to the RE approach, specifically, we detail how we created a distantly supervised French RE
model. Chapter 6 presents the experimental evaluation carried out for both NER and RE, in particular
the obtained results, and the integration of the models in CONNECTIONLENS. Finally, Section Chapter 7

concludes this document by presenting the main conclusions and possible future work.

Background on Information Extraction

Contents
2.1 Information Extraction Pipeline i 12
22 Auxiliary ReSoUrCeS & v ¢ v i ittt h e e e e e e e e e e e e e 13
23 TextPre-processing o v v v v i i i it e e e e e e e e 15
2.4 Information Extraction Techniques i 16

10

Named-Entity Recognition (NER) and Relationship Extraction (RE) are Information Extraction (IE)

tasks. In this section, we introduce the main topics regarding IE.

Data sources that need to be analyzed and integrated can be structured or unstructured. A structured
data source has a pre-defined data model, thus the data is highly organized, and usually resides in a
relational database. This type of data is easily searchable and processed by machines. Yet, many data
sources available in the world are unstructured. Unstructured data sources do not have a defined format
and cannot be stored in a relational database. Furthermore, that there is a large amount of this kind
of data sources available. Therefore, it is difficult and sometimes impossible to obtain relevant search
results. |E [3—6] aims at identifying and classifying data from unstructured data sources in semantic

classes. This process can be perceived as a mapping of unstructured data sources to a structured form.

Most of the advances in IE have been in natural language texts. However, unstructured data also
includes images, video, audio, social media activity, etc. Since the goal of this thesis is to recognize and
extract named-entities and relationships from text, the focus of the rest of this section will be on textual
data sources. Extracting information from natural language texts relies and may be seen as a higher
task of Natural Language Processing (NLP) which is the process of analyzing and manipulating natural

language texts in a way that is understandable by computers.

The extraction of semantic information is possible through the detection of smaller sub-structures
in text. Humans are able to discover the meaning of a sentence through the meaning of the sentence
constituents, their ordering, dependencies and realization. Texts are therefore somewhat regular in
terms of the patterns shown and their organization. Through these regularities, it is possible to extract

semantic information even if not "immediately computationally transparent" [4].

IE retrieves small parts of the text that belong to a pre-defined set of semantic classes. These
classes can be entities e.g., Person or Organization, relationships between them e.g., Located or Family,
among others. A pre-defined number of attributes can also be extracted. For example, consider that
we are extracting and classifying house divisions from a natural language text. Besides the type of
house divisions, we can also extract attributes about the room like the shape, the dimensions, etc. The
semantic classes might be defined at different granularity levels depending on the application or need,

for example, Location or Country and City.

IE may be performed over a small text excerpt or a sentence, but also over paragraphs and doc-
uments. The latter occurs when context is important, and for that reason more than one sentence
spanning one or more texts is necessary to perform the desired extraction. Furthermore, IE is typically
applied to a particular domain (closed domain) e.g., news, medicine, meaning that the textual informa-
tion and the semantic structures are related to that domain. However, an ideal |IE system should be able

to perform independently of the domain (open domain).

11

2.1 Information Extraction Pipeline

A basic |E pipeline [3, 5, 6] is shown in Figure 2.1. A raw natural language text is given as input to be
processed by the pipeline. Then, IE can be divided in four major tasks: Segmentation, Named-Entity
Recognition, Relationship Extraction and Coreference Resolution. The raw natural language text given
as input to the pipeline also needs to undergo a text pre-processing step. Overall, the various IE tasks
and the text pre-processing step can use a set of auxiliary resources.

The raw natural language text is first segmented into sentences and segmented into words (also
called tokenization) in the Segmentation task (Task 1). Tokenization divides a text into smaller linguist
units, called tokens, which can be words, numbers or punctuation. Tokenization often separates punc-
tuation from words and keeps the punctuation as a token, because besides constituting different units, it
may be useful. For example, periods are good indicatives of sentence boundaries. Also, a punctuation
mark that occurs internally in a word is important to be kept. Examples include abbreviations (e.g., P
Varin), compound words with an hyphen (e.g., Comédie-Francaise), contractions (e.g., I'lsére), etc. A
tokenizer can also expand contractions e.g., le Isére or tokenize more than one word in a single token
e.g., "Anne Martin" instead of "Anne" and "Martin".

Sentence segmentation is performed through the detection of punctuation which indicates sentence
boundaries: question marks, exclamation points, periods. The Segmentation task is mandatory and
essential in the IE pipeline because all other tasks use the tokens that result from this step.

Special care must be taken, as mentioned before, because periods may cause problems of ambiguity
because they may be placed at the end of sentences or as abbreviation marks. In fact, the same period
character may indicate both the end of a sentence or mark an abbreviation if an abbreviation which ends
in a period is at the end of a sentence.

The tokenized sentences that are produced by segmentation go through a text pre-processing step
with the help of auxiliary resources, more specifically NLP pre-processing libraries. The text pre-
processing task entails several sub-tasks namely: (i) cleaning e.g., removing noise or special char-
acters, (i¢) normalization e.g., transforming words to their root, as well as (ii¢) linguistic annotation e.g.,
associating part-of-speech tags to tokens, that will be helpful in the succeeding tasks.

Cleaned and normalized tokens will be assigned a named-entity class, from a set of pre-defined
types of named-entities (including a type for not-entity), in the Named-Entity Recognition task (Task 2).
The linguistic annotations referred by the text pre-processing step and a structured database containing
known entities may help in the recognition of the entities. Additionally, /abeled unstructured text may
participate in the creation of the NER system and it is also helpful for evaluating its performance. As a
result of the Named-Entity Recognition task, we have a natural language text with annotated entities.

Using the text with annotated entities, the Relationship Extraction task (Task 3) identifies the relation-

ship between a pair of annotated entities in each sentence. Analogously to the Named-Entity Recogni-

12

tion task, linguistic annotations resulting from the text pre-processing step are also used. A structured
database of known entities and relationships, and labeled unstructured text also helps the RE. This task
will output a set of relationship triples composed of two entities and the relationship between them.
Finally, the Coreference Resolution task (Task 4), takes the relationship triples and finds entities that
refer to the same entity and collapses them into one e.g., "Emmanuel Macron", "President of France",

"Macron" are all collapsed to the same named-entity.

raw natural
language text

sentence + word)

tokenized sentences .

Segmentation } //;;rocessing libraries
L 1

‘ Text Pre-processing ’

-1 ’
clean and normalized tokens R L
+ linguistic annotations e :// _
& g _ - —f)\’ -
Named-Entity S 7 Labeled
@) Recognition ,/ v Unstructured Text
"
’ e
annotated entities // 7 L ___ Auziliary Resources |
¥ /L/ g
Relationship W relationship triples (Coreference
3) Extraction J) k Resolution

Figure 2.1: Information Extraction Pipeline

2.2 Auxiliary Resources

Various auxiliary resources can facilitate the extraction task [3], in particular: (i) structured databases,
(#7) labeled unstructured text and (izi) NLP pre-processing libraries.

Structured databases are populated with known familiar entities and relationships that can help dur-
ing extraction. Labeled unstructured text or a set of labeled unstructured texts (known as corpus), in
general manually labeled, are useful for some types of extraction whose creation and initialization de-
pends on them. Moreover, they are used to validate and evaluate the extraction system.

The classification of the extracted information units requires a pre-processing step where each unit

13

e.g., word, sentence, etc, is transformed into a feature vector. Features are properties or attributes that
describe the units e.g., for a word: its part-of-speech tag, if it is a capitalized word, etc. The set of all
features for some data is called the feature space.

NLP pre-processing libraries are capable of extracting linguistic information, using natural language
processing tools, that will work as features in the extraction task. The following NLP pre-processing

libraries are typically used:

1. Sentence analyzer and Tokenizer: A sentence analyzer and a tokenizer perform, respectively,
sentence segmentation and word segmentation (tokenization). As a result of using both libraries

we have sentences and their respective tokens, i.e., tokenized sentences.

2. Part-of-Speech (POS) tagger: The tagger assigns a morphosyntactic class (also referred to as
grammatical category), from a fixed set, to each word, e.g., noun, verb, adjective, pronoun. A
well-known set of POS tags is the Penn Treebank POS tag set'. The following example, taken
from [3], shows a sentence annotated with the POS tags of each word, from the Penn Treebank

POS tag set, is the following:

The/DT University/NNP of/IN Helsinki/NNP hosts/VBZ ICML/NNP this/DT year/NN,

where DT is a determiner, NN is a noun, NNP is a proper noun and IN is a preposition or subor-

dinating conjunction. The POS tags can be used as features during extraction.

3. Parser: The parser performs a syntactic analysis of sentences i.e, parsing of sentences. A parser
divides sentences in their syntactic constituent phrases, e.g., verb phrase, noun phrase, adjective
phrase, prepositional phrase. A phrase is a word or a group of words that has some grammatical
meaning in the sentence. Most phrases have a word more important than the others, that is called
the head of the phrase, which commonly identifies the type of the phrase e.g., if a phrase has a

head that is a noun, that the phrase is a noun phrase.

A syntactic structure, parse tree, is assigned to a sentence as result of parsing. The output parse
tree is a dependency structure which can be used in NER, since a named-entity tends to corre-

spond to a noun phrase. It also facilitates the extraction of relationships between entities.

An example parse tree for the sentence [3]: "Haifa, located 53 miles from Tel Aviv will host ICML

in 2010", is shown in Figure 2.2.

The parse tree shown in figure 2.2 is, specifically, a full parse tree (also referred to as deep or
constituency-based parse tree), obtained from constituency parsing (also called deep or full pars-

ing). Another type of parsing exists, which is called shallow parsing (also called partial parsing or

Thttps://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

14

chunking), where a less complex shallow parse tree is obtained. In shallow parsing, there are no

embedded phrases i.e., no overlapping or recursive phrases.

4. Dependency analyzer: This module connects each word to the words that depend on it by creating

a dependency graph, which is very useful for RE.

In a dependency graph, the nodes are the words and the directed edges connect a word to the
words that depend on it. An example of a dependency graph for the sentence: "Haifa, located 53
miles from Tel Aviv will host ICML in 2010", [3], is shown in Figure 2.3.

(ROOT
(s
(NP
(NP (NNP Haifa))
(VP (VBN located)
(PP
(NP (CD 53) (NNS miles))
(IN from)
(NP (NNP Tel) (NNP Aviv)))))
(VP (MD will)
(VP (VB host)
(NP
(NP (NNP ICML))
(PP (IN in)
(NP (CD 2010))))))))

Figure 2.2: Parse tree of the sentence "Haifa, located 53 miles from Tel Aviv will host ICML in 2010"

o
Haifa located 53 miles from Tel Aviv will host ICML in 2010

Figure 2.3: Dependency graph of the sentence "Haifa, located 53 miles from Tel Aviv will host ICML in 2010"

2.3 Text Pre-processing

Text pre-processing has the goal of preparing a raw natural language text to facilitate its use in further IE
tasks, e.g., NER. Text pre-processing involves steps of cleaning, normalizing and annotating the input
text with linguist information. Segmentation in sentences and words (tokenization) is considered by
several authors e.g., [7], as a text pre-processing step, although [5] considers it as an IE task, by itself.
The cleaning step consists on eliminating less useful parts of the text: punctuation (discussed in
Section 2.1), stop words and noise, or special characters. Stop words correspond to very common words
in a language e.g., "the" and "a", and typically correspond to function words that are not very useful. Text
may contain noisy pieces of text or special characters that need to be removed. Lowercasing can be
considered as a cleaning or normalization process that reduces data sparseness. If not performed,

capitalized words at the beginning of a sentence will be considered different from the same words, not

15

capitalized, in the middle of the sentence. However, by making all words lowercase, some important
information useful, for example, in NER regarding if a word is a proper noun or a common noun is lost.

Normalization is a typical text pre-processing step that processes and transforms tokens written
differently into a single standard form. Other functionalities of text normalization include lemmatization
and stemming. Both have the goal of representing words, that express the same meaning, by the same
token. With stemming, words are transformed into their root (or stem), which is the most basic form of a
word (without suffixes or prefixes). With lemmatization, words are transformed into their dictionary form.

Annotation [8] consists on the association and enrichment of the text with linguistic metadata, which
is information that describes the text. Different NLP pre-processing libraries can be used to obtain
various types of linguistic annotations: POS tags, parse tree and dependency graph. These linguistic
annotations will be used as features during extraction, as already mentioned.

If the input text contains annotated entities, it is necessary to use an encoding scheme to assign a
label to each token. The most widely used encoding scheme, and considered by some as standard, is
the IOB (Inside, Outside and Beginning) encoding [9]: the "B" prefix is assigned to a token if it corre-
sponds to the beginning of an entity, "I" if the token is a continuation of an entity and "O" for other tokens.
In 10B-1 (typically just referred to as I0B), the "B" prefix is only used if two named-entities of the same
type occur immediately after each other, where the first token of the second named-entity is assigned
the "B" prefix. 10B-2, also referred to as BIO, is a derivative encoding scheme from 10B-1, where the
"B" prefix is used for every token that is the beginning of a named-entity. Taking, as an example, the

sentence, adapted from the WikiNER dataset (see Section 4.2.1):

Tandis que le [comte de Toulouse]person [Raymond Vlperson regoit 'absolution, le [comte de Carcassonne]person

affronte seul 'armée.

and that basically translates to: While the count of Toulouse Raymond VI receives absolution, the
count of Carcassonne confronts the army alone. An IOB-1 and |IOB-2 encoding scheme for the previous
sentence and named-entity type Person is represented in Table 2.1. The first column corresponds to the
token, the second column to the I0OB-1 encoding and the third column to the IOB-2 encoding scheme.

Moreover, "PER" corresponds to Person named-entity type.

2.4 Information Extraction Techniques

The classification of extracted information, i.e., named-entities (in the NER task) and relationships (in the
RE task), can be performed through rule-based methods or machine learning methods. Classification (a
type of pattern recognition [4]) consists on classifying an object into a certain class from a set of possible

classes. Each object is characterized according to values of a selected set of features. A feature vector

16

Token IOB-1 10B-2

Tandis O O
que @] @)
le 0] @]
comte I-PER | B-PER
de I-PER | I-PER
Toulouse I-PER | I-PER
Raymond B-PER | B-PER
VI I-PER | I-PER
recoit O O
I O O
absolution @) @)
, O O
le O O
comte I-PER | B-PER
de I-PER | I-PER
Carcassonne | I-PER | I-PER
affronte @) O
seul @) @)
I O O
armée @) @)

0] @)

Table 2.1: Example of IOB-1 and IOB-2 scheme

is built for each object. Furthermore, classification is done by identifying regularities, i.e., patterns, in the
objects features. A system that automatically assigns a class to an object is called a classifier.

Classification can be binary or multi-class. In binary classification, an object is assigned to one of two
classes. In multi-class classification there are more than two available classes. Multi-class classification
can be further divided in: (7) multi-label classification and (i4) multinomial classification. In multi-label
classification, an object can have more than one class assigned. The most common is multinomial clas-
sification, sometimes just referred to as multi-class classification, where classes are mutually exclusive,
so each object is assigned to a single class from a set of possible classes. There are classification
algorithms that perform multi-class classification, but most of the algorithms are binary. Different binary
classifiers can be created for each class and combined to create multi-class classification in the so called
one-vs-all approach. In |E, classification is considered multi-class and, most of the time, multinomial.

Rule-based |E methods perform IE through a collection of rules that typically are hand-coded by
human experts or may be learned from examples. Experts need to have both domain and linguistic
knowledge in order to be able to produce the extraction rules.

Machine learning IE methods can also be used. Machine learning algorithms have the ability to learn

17

from data, by creating a mathematical model from it, and then make predictions based on this model.
When labeled train data (generally, manually labeled) is available, supervised machine learning tech-
niques can be used, however, when it is not, one can resort to unsupervised techniques. Futhermore, if
the amount of labeled train data is limited, semi-supervised techniques can be used.

Supervised machine learning, and more specifically statistical classification, takes a dataset of input
examples and tries to learn how to map a new example to the correct output class. The examples usually
consist in feature vectors and their corresponding classes, that are obtained from annotated text, and
form the train data or train set. In this context, a classifier has the goal of, given new input examples,
called the test data or test set, predict their true class. To perform this, an appropriate algorithm needs to
be chosen e.g., Support Vector Machine [10], as well as the features. There are two types of classifiers:
generative and discriminative. Whereas generative classifiers try to model how a class can generate
some input data (i.e., models the distribution of each class), discriminative classifiers try to learn what
features discriminate between the classes (i.e., models the decision boundary between classes).

Supervised machine learning can be generalized to structured prediction. In structured prediction,
the output is a complex structure like a sequence, graph, image, etc, unlike classification, where the
output is a class. Sequence labeling or classification is a structured prediction problem where the input
data is a sequence of objects and the output is a class sequence. In |IE the sequence of objects typically
correspond to a sequence of words.

Labeled data is generally labeled manually by humans. This is typically an expensive process, thus is
not always available. Unsupervised machine learning uses unlabeled data to infer patterns on the data
and learn about it. Finally, semi-supervised machine learning uses a combination of, typically, a small
amount of labeled data and a large amount of unlabeled data. It is an alternative for situations where the
amount of labeled data is limited, and a mix of supervised machine learning and unsupervised machine
learning techniques can be used.

Specific techniques for NER and RE will be detailed in Section 3.1.2 and 3.2.2, respectively.

18

Related Work

Contents
3.1 Named-Entity Recognition i i e e e 21
3.2 Relationship Extraction 0o i i ittt e e e e e 38

19

20

In this Chapter, the most relevant related work for Named-Entity Recognition (NER) and Relationship
Extraction (RE) is presented. Moreover, existing techniques and software tools are presented, for NER
in Section 3.1 and for RE in 3.2.

3.1 Named-Entity Recognition

Named-entities [11, 12] are words or phrases that can be denoted with a proper name, and, that can
be seen as part of a group of items with the same characteristics. They typically enclose names of
people, names of organizations and names of locations. These named-entity types can be divided in
finely-grained subtypes e.g., Location may be divided in Country, State, City, etc. Named-entities can
be extended to include other domain-specific terms e.g., proteins and genes in the biomedical domain.

Named-Entity Recognition (NER) is a task that consists in the identification of named-entities in a
natural language text and subsequent classification according to a pre-defined set of types of named-
entities. Additionally, the NER community [11] generally agrees that temporal expressions and numerical
expressions may also be extracted when performing this task. Moreover, the named-entity definition can
be loosen to include other classes according to the tasks’ needs e.g., book titles, phone numbers,

animals, etc.

3.1.1 Features

Features of a word are clues that can be used for its prediction and classification. Features [6,7,11,12]
that are typically used when performing NER can be divided in (i) orthographic; (i7) morphological; (ii7)

lexical; and (iv) contextual.
Orthographic features

Orthographic features are related to how the word is written. Features that are included in this
category may be related to (i) the word case e.g., if it starts with a capital letter, if it is all uppercase or if
it is mixed case; (i7) punctuation e.g., if it ends or has an internal period, if it has an internal apostrophe
or hyphen; (ii¢) digits e.g., if the word is an ordinal or cardinal number, if it contains digits, it it is a roman

number; and (iv) special characters e.g., greek letters, possessive mark.
Morphological features

Morphological features refer to the structure of the word and the way it can be decomposed in mean-
ingful units i.e., morphemes. Named-entities often have common structures and units, so, features of
this type are good indicators for recognizing and classifying named-entities. Examples of these features

are the word’s prefix and suffix (or a certain length), its singular version and its stem and lemma. Another

21

feature to be considered is the common word ending of certain named-entity types e.g., technological
organization names often end in -soft or -tech. A way to consider common sequences of characters
in the middle of words is to use character n-grams [13] as features. During training, a list of charac-
ter n-grams and corresponding frequencies (or probabilities) for each named-entity type are computed.
When predicting if a word is a named-entity and of what type, two kinds of features are generated for
each existing named-entity type, based on the word’s character n-grams: the probability of the word
being a named-entity of the respective type, obtained by taking the average of the probabilities of each
character n-gram of the word belonging to that type, and, the character n-gram of the word with the

highest probability of existing in that named-entity type.

The word shape is also a useful feature that abstractly reflects the types of characters and their
organization in the word, thus generating a pattern. An example of generating this pattern is to map
all lower case letters to "x", all uppercase letters to "X", numbers to "d" and keeping the punctuation as
is. Shorter word shape is another feature often used, where the idea described for the word shape is
followed, but consecutive character types are removed. Considering the word "Paris" as an example, its

word shape would be "Xxxxx" and its short word shape would be "Xx".

The part-of-speech (POS) tag of the word is also an important feature, because named-entities
usually correspond to proper nouns. Features derived from the sentence’s parse tree are also helpful
(syntactic features) e.g., knowing if a word is part of a noun phrase is a good indicator of it being part of

a named-entity.
Lexical features

The lexical usage of terms that are associated to named-entity types provide external knowledge to
the NER system. These terms are contained within lists, and are also referred to as gazetteers, lexicons
or dictionaries [11]. As an example, we can think of a list of locations: if a word belongs to this list, than
the probability of it being a Location named-entity is high.

The term gazetteer is often used when referencing specifically to lists of locations.

Lists of names i.e., first names and surnames, and organizations are also used, but may not always
be useful [6].

Most approaches require that words match exactly one element of the given list. However, some
flexibility may be allowed by considering stemmed versions of the words, or by the words being "fuzzy-
matched", where a similarity measure between the word and the list’s words is applied and a threshold

is defined, etc.

Lists of predictive words applied to the surrounding words of the given word, may also be an indicator
of the named-entity type. Examples of this are preceding and following titles e.g., "Mr.", or other terms

like "Inc.", which are good indicatives of Person and Organization.

22

Contextual features

The context of a named-entity is also a good indicator that the word is a named-entity, thus it can be
used as a feature. The context of a word is obtained by defining a context window of a certain size, that
will capture the preceding and succeeding words, i.e., neighboring words, of each word. Not only the
words are captured, but also some of their features, allowing to induce certain regularities for when a
named-entity occurs. Moreover, each feature of a neighboring word is a feature of the word that is being
predicted. Another approach is to create features that are the conjunction of features of the neighboring

words.

3.1.2 Techniques

NER can be seen as a sequence labeling or sequence classification task, where given as input a se-
quence of words, e.g. a sentence, a sequence of labels or classes, i.e., named-entity types, is returned
as output. The labels will capture not only the type of the named-entities, but also their boundary. For-
mally, the sequence of words will be denoted by X = {z4, ..., x,}, where n is the number of words, and
the sequence of corresponding labels by Y = {y1, ..., y» } Where each label y; belongs to the pre-defined
set of named-entity types) which includes a special type for when a token is not a named-entity.

To label the tokens, an encoding scheme that captures the fact that named-entities may be formed
by multiple tokens is necessary. The encoding scheme should encode the boundaries and the labels
of each named-entity in the original text. Approaches typically use the I0B or BIO notation that was
explained in Chapter 2.

The different techniques that exist for NER can be grouped in the following standard methods [6]:

1. Supervised methods that require labeled training data and can be further divided into:

(a) Feature-based methods where features are designed from each word that is then repre-
sented by a feature vector. These are used to train either a multi-class classifier or a sequence

model/classifier, that will later be used to make predictions on new data.

(b) Neural-based methods where deep learning neural models are capable of automatically

learning features when given raw data thus are not dependent on hand-crafted features.

2. Rule-based methods that use hand-crafted rules based on lexical features and domain knowl-

edge to perform NER.

In the following Sections we will give more details regarding the supervised techniques, that use

labeled data and do not require linguistic knowledge, and that better fit the scope of this thesis.

23

3.1.2.1 Feature-based Methods

In feature-based techniques, each word is usually be described by a feature vector, that contains several
attributes of the word i.e., features, like the ones presented in Section 3.1.1. Moreover, these features
can be specified by boolean, numerical or nominal values.

One solution for the NER sequence labeling problem would be to independently classify each token of
the input sequence using a conventional classifier. However it is a sub-optimal solution, because context
would not be taken into account. In other words, the optimal label of a certain token of the sequence
should depend on the labels of the neighboring tokens, because labels have conditional dependencies.
Taking the example in [14], we can look at the sequence "Paris Hilton", where "Paris" can be either a
Location or a Person and "Hilton" can be either an Organization or a Person. If one of them is labeled
as Person, the other should be labeled as Person as well. Thus, as we can see, the labeling decisions
influence each other. That is where sequence models, also called sequence classifiers, are useful,
because when they are classifying a token, they take into consideration the labels previously assigned
to the preceding tokens.

Different algorithms have been used over the years for performing Named-Entity Recognition. Con-
siderable work was done using Hidden Markov Models (HMM), Decision Trees, Maximum Entropy Mod-
els (ME), Support Vector Machines (SVM) and Conditional Random Fields (CRF). Decision Trees and
SVM are conventional classifiers and do not take into account the context of the words when classifying,

s0, the rest of this section will be focused on sequence models i.e., HMM, MEMM and CRF.

HMM

Hidden Markov Model (HMM) [15-17] is a sequence model that extends Markov Chains, which are
sequential stochastic models which means they are defined by a sequence of random variables, states,
Q@ = {q:}, whose outcomes are not certain. In a Markov Chain, states correspond to observable events
and it is possible to predict the probability of a sequence of states e.g., probability of a sequence of
words. But, in some cases, it is necessary to predict the probability of events that are not observable, i.e.,
that are hidden. The concept of a Markov Chain can be extended to have has two stochastic processes,
defining the model know as HMM: one defined by the sequence of hidden events, i.e., hidden states,
and another of observable events through which the hidden events are observed.

An HMM is specified by several components:

» Sequence of T states, Q@ = {q:}, whose values belong to the finite set of N values S = {51, ..., Sn },

known as state space

» Sequence of T observations, O = {O.}, whose values belong to the finite set of M values V =

{v1,...,upr }, known as observation space. The observations represent the physical output of the

24

model

+ Transition Probability Matrix A, represents the dynamics of the Markov Chain. Its size is of N x N.
[A];; is the value in row 7 and column j, which represents the probability a;; of transitioning from
state i to state j,

aij = P(gt = Sjlgt—1 = 5i)

+ Observation Probability Matrix B, of size N x M. [B]; is the value in row j and column &, which

represents the probability b;(v;) of observing observation & on state j,

bj(vk) = P(Ot = Uk|Qt = Sj)

These probabilities are also called emission probabilities.

« Initial State Distribution 7, represents the probability of the process starting in each state.

7= P(q1 = S;)

The model makes two strong assumptions:

1. Markov Assumption: the probability of a state only depends on the previous state, and not on all

of its preceding states:

P(Qt = Sj“]l =854, qi—1 = Si) = P(Qt = Sj\th = Si) (3.1)

2. Output Independence: the probability of an observation only depends on the state that produced
it, in other words, to predict an observation at time step ¢, only the state at time step ¢ is necessary,

and not all of its preceding states or observations:

P(Oy = vglgi = Sa,....qt = 5,01 = vg,..., 041 = v;) = P(Oy = vg|qe = 5;) (3.2)

An HMM can be described by the its model parameters using the notation A = (4, B,x). Since
training data is available, the probabilities of the parameters can be estimated from the data.

For NER, we want to solve the problem of given a sequence of words (observations), discover the
most probable sequence of labels (states), using an HMM (called the decoding task). This problem
can be solved using a dynamic programming method called the Viterbi algorithm [18], which is the most
common decoding algorithm for HMMs.

The joint probability of a state sequence @ = {q¢1, ..., ¢r} and an observation sequence O = {Oy, ...,Or}

25

is the probability of @ and O occurring simultaneously, given the model A, and can be computed as fol-

lows:

P(Q,0[A) = P(O[Q,) - P(Q, A)

In order to discover the best or most probable state sequence @ = {q1, ..., ¢r } for a given observation

sequence O = {0y, ..., Or}, the algorithm computes the joint probability of @ and O, given the model X:

6:(1) = qlr{l.azxil P(q1y..esqe = S5, 01, ..., Ot|X)
which is the probability of the path, i.e., state sequence, with highest probability at time step ¢, thus
accounting for the first ¢ observations and ending in state ¢, = S;. For a state ¢, = S, the value of 4,(j)

is, by induction:

6:(5) = mZaX[&H(i) “agj] - bj(Oy)

where three factors are multiplied: the previous Viterbi path probability é;—; (i), obtained from the pre-
vious time step, the transition probability from the previous state S; to the current state S;, a,;, and the
probability of observing the current observation O, given the current state S;, b;(O;). 6.(j) represents
the probability of the model being in state .S; after observing the first ¢ observations and going through
the most probable state sequence up to ¢,_;. For each state S, possible at each time step ¢, 6,(j) is
computed recursively by taking the most probable state path that could lead to state 5.

To obtain the state sequence, it is necessary to compute, along with §;(j), the value v.(j) which
corresponds to the argument i that maximized é,(5) i.e., the state .S; that led to the state S;. Moreover,
the best state sequence i.e., best sequence of labels, for the observation sequence i.e., word sequence,
is computed by backtracking the best state path to the beginning using v, thus also assigning maximum
likelihood to the sequence of observations.

A representation of an HMM computing the probability of the correct sequence of states (labels)
for the sentence "Mark Watney visited Mars" is shown in Figure 3.1. The arrows in Figure 3.1 reflect

the dependencies between the variables and are associated with a probability. As we can see, the
probability of an observation depends only on the current state, the state that produced it. Additionally,
i

the probability of the current state depends only on the previous state.

MEMM

Maximum Entropy Markov Models (MEMM) [19, 20] are an extension of Maximum Entropy (MaxEnt

or ME) models. ME models, also known as multinomial logistic regression, independently assign a label

26

Figure 3.1: HMM representation of label sequence computation for a sentence

to an observation by determining a probability. MEMMs extend the ME model to sequence labeling,
based on HMMs.
An HMM is a generative model which makes it hard to directly incorporate features. The model rests
on two probabilities: the state transition probability, P(g¢|¢:—1), and the observation probability, P(Ox|q:).
Thus, to incorporate features in the model, they would need to be encoded, in some way, in one of the
two probabilities.
The goal is to find the most probable state sequence @ given an observation sequence O, P(Q|O).
With an HMM, instead, we compute the probability of a state producing a certain observation, P(O|Q)P(Q).
Since the observations are given, the probability of the observations is not useful; we are solely inter-

ested in estimating the probability of the state sequence generated by the observations. Pls check

reformula-

MEMMSs are an alternative to HMM that can compute the P(Q|O) directly. They are discriminative

tion
models and are able to directly discriminate amid possible state sequences. A MEMM models only one

probability: state-observation transition probability P(¢:|q:—1,O:), the probability of the current state ¢;
given the previous state ¢;—; and the current observation O;. Observations that are associated to states
when using HMMs, are associated to state transitions when using MEMMs.

Moreover, HMMs employ is a Transition Probability Matrix A and an Observation Probability Matrix
B. In contrast, when using MEMMs, we have a single matrix, of size (N x M) x N, with the probabilities
of all possible combinations of previous states ¢;_; and current observations O; with current states ¢;.

The use of state-observation transition probability in MEMMs (instead of state transition and obser-
vation probability in HMMs) enables the modeling of transitions in terms of multiple, non independent
features of observations. Maximum Entropy is used to estimate the conditional probability of a state.i.e.,
label, given its previous state, the current observation i.e., word, and any desired features, exponentially, | found

as follows: Maximum

Entropy un-

1 N clear here
P(gilgi—1,0¢) = Z(Ottp_l)eXp<Z)\ifi(Oth))

=1
where Z(0Oy,q;—1) is the normalization factor (which makes the distribution sum to 1 across all next
states ¢;), \; are feature weights to be learned from the training data and f; is the probability of feature

1 given the current observation O; and a possible new current state ¢;.

27

To perform the decoding task i.e., discover the most probable state sequence given an observation
sequence, the solution is to use the Viterbi algorithm like in HMMs, however an adaptation needs to be
performed. In order to discover the best or most probable state sequence Q = {q,...,¢r} for a given

observation sequence O = {0y, ..., Or}, using an HMM, the algorithm computes:
0¢(j) = max[6,—1() P(gr = Sjlgs—1 = Si)] - P(Or = vilge = 55) = max[dp—1(i)aij] - b;(Oy)

With a MEMM, the transition probability, a;; or P(q: = Sj|g:—1 = S;), and the observation probability,
b;(Oy) or P(O, = vi|gs = S;), are replaced by the probability P(g|q;—1,O,):

5(J) = m?X5t71(i)P(Qt = Si|g—1 = 5;, 0 = vg)

Training in MEMMs is based on the same algorithm used for multinomial logistic regression, where
(M the weights or parameters are trained to maximize the log-likelihood of the training data.

A representation of an MEMM computing the probability of the correct sequence of states (labels)

for the sentence "Mark Watney visited Mars" is shown in Figure 3.2. The arrows in Figure 3.2 reflect

(IM the dependencies between the variables and are associated with a probability . As we can see, the

probability of a state depends on the previous state and the current observation.
i

Figure 3.2: MEMM representation of label sequence computation for a sentence

CRF

Markov models, including MEMMs, have a weakness called the label bias problem i.e., outgoing
transitions of a state only compete against each other, because the state transitions are normalized

locally, as opposed to against all other transitions in the model. If a state only has one outgoing transition,

it is obliged to move to next state, making the observation irrelevant. Consequentially, states with fewer

ear so far joytgoing transitions are preferred.
Conditional Random Field (CRF) [21-23] is a sequence model that improves over MEMM, solving

the label bias problem. MEMM uses an exponential model for each state to describe the next states,

| efam meaning there is a per-state normalization. CRF uses a single exponential model for the joint proba-

clearly see bility of the entire state sequence given the observation sequence, which enables the state transition
the connec-
tion - how o8
the previ-
ous text

implies this

phrase

probabilities to be globally normalized.

Consider that X and Y are random variables that, respectively, represent observation sequences
(i.e., word sequences) and corresponding state sequences (i.e., label sequences). CRFs can be seen
as a discriminative undirected graphical model, globally conditioned on X. Consider G = (V, E) is an
undirected graph with a node v € V' for each element Y, of Y. (X,Y) is a CRF if it satisfies the Markov

property with respect to the graph, when conditioned on X:

P(Y,|X,Yy,w #v) = P(Y,| X, Yy, w ~)

where w ~ v means that w and v are neighbors in the graph G. Linear-chain CRFs correspond to
a graph structure where the nodes, that correspond to the elements of Y, form a simple first-order
chain. Linear-chain CRFs are the simplest and most commonly used graph structure when modeling
sequences, to which we will refer to simply as CRF for the rest of the document.

A CRF is a model defined by the probability distribution of a state sequence y given an observation

sequence z that takes the form:

P(ylz, A) = ﬁ exp (A - F(y, w))

where Z(z) is a normalization factor, A are feature weights to be learned from the training data and F' is
the "global" feature vector, because it maps the entire state sequence to a d-dimensional feature vector.

The global feature vector F' can be decomposed in:

N

F(y,z) = f(Yn-1,Yn,z,7n)

n=1
meaning the F' global feature vector is obtained by summing f over the N different state transitions in
y1, ..., yn- 1he feature vector f analyzes the entire x sequence, the current state y,,, the previous state
yn—1 and the current position n in the sequence.

We call F, the k’'th "global" feature vector for &k = 1, ..., d and is obtained by

N
Fk(yal‘) = Z fk(yn—layna I,’I’L)
n=1

The decoding problem in a CRF i.e., finding the most probable (or best) state sequence i.e., label

sequence, given an observation sequence i.e., word sequence, is defined by the equation:

argmax P(y|x, \)
Yy
which can be simplified into:

29

This is
the first
mention of
“graphical
models”.

It needs
to be in-
troduced,
even if
briefly, be-

fore.

N

argmaxz A f(Yn—1,Yn, T,M)

Yy n=1

The problem can be solved using a variant of the Viterbi Algorithm, where é;(j) becomes:

6t(J) = m?XCSt—l(i) + X fli, g, x,t)

During the CRF training phase, the weights or parameters that best fit the training data are discov-
ered, i.e., the weights that maximize the log-likelihood of the training data. The standard approach uses
iterative scaling or gradient-based methods [24].

A representation of an CRF computing the probability of the correct sequence of states (labels) for
the sentence "Mark Watney visited Mars" is shown in Figure 3.3. CRF is represented by an undirected

graph and shows that the probability distribution of a sequence of states (labels) is given by a sequence

@of observations.

Again,
there is
no prob-
ability in
the figure,

it's hard to

. Figure 3.3: CRF representation of label sequence computation for a sentence
relate it to

the text.

3.1.2.2 Neural-based Methods

Deep learning [14,25] is a family of machine learning methods, that are composed of many processing
layers, typically artificial neural networks. Artificial neural networks attempt to simulate the human brain
and contain a series of interconnected artificial neurons (or units) arranged in layers, which have asso-
ciated weights. The input layer receives information of a certain format, processes and learns about it in
hidden layer, and, an output layer that makes a decision or prediction about the input. A deep artificial
neural network is composed of more than one hidden layer.

Deep learning methods use deep artificial neural networks, and are not only able to learn to make
predictions but also able to transform the input data to its most suitable representation for prediction
i.e., learn features directly from the data. This is achieved by feeding the data into the network that will
then successively transform it until the output is predicted in a final transformation. Then, the errors are
propagated back through the network, adjusting the network’s weights.

Deep learning methods are independent from hand-crafted features, that require some engineering,

as well from lexical features that are domain specific, thus making them domain independent. While

30

the previous feature-based techniques presented generate linear mappings, neural-based methods can
benefit from non-linear mappings, that allow the model to learn more complex features.

Recent methods for NER are deep learning based or neural based, and achieve state-of-the-art
results. The methods combine multiple neural networks of different architectures, but all tend to use a
Recurrent Neural Network (RNN) which is a kind of neural network architecture specialized for sequential
data. This neural network is trained to produce informative representations of the data to be fed to
another neural network or another network component, that will predict the labels.

Furthermore, we can say that the general architecture of a deep-learning based NER model is com-
posed of an embedding layer (input layer), a context encoding layer and a sequence labeling layer

(output layer). These will be further explained below.

Embedding layer

When using deep learning to solve NLP problems, typically, an embedding layer is used, also known
as lookup layer. An embedding layer maps the input sequence of words to a sequence of vectors which
are distributed representations of the words i.e., word embeddings [26].

The input given to the neural network will be words, that can be seen as categorical or symbolic
features (words from a defined vocabulary V). Moreover, the embedding layer of the neural network will
map the categorical features to d-dimensional vectors, for some d, that are considered parameters of the
model (and that can be trained in conjunction with them). These vectors are distributed representations
of each word. They represent words in low dimensional real-valued dense vectors. Each dimension of
the vector is a latent feature that captures syntactic and semantic properties of the word.

The mapping consists in a lookup operation, that takes a word and accesses a matrix with it to obtain
its word embedding. The matrix, also called embedding matrix, contains a collection of |V| vectors, one

for each word in the vocabulary, and is of the size |V| x d.

Context encoding layer

A context encoding layer captures the context dependencies from the input representations and
produces context-dependent representations. Usually a RNN is used to achieve this, which is capable
of analyzing sequential data. A simple RNN has an input layer z, an hidden layer » and an output layer
y as it is possible to see in Figure 3.4. Furthermore, it earns the name "recurrent" because it makes
the same computation for every element in the input sequence which is dependent on the previous
computations, depicted by the loop in Figure 3.4.

In Figure 3.4 we can also see the RNN’s recursion being unrolled, which basically means we can

look at the network for the complete sequence i.e., if the sequence contains n words, then the unrolled

network will contain n layers, one for each word. The RNN takes as input an ordered sequence of n

31

So, a word
becomes
a vector of
numbers;
OK.

Is this
mapping
from
categorical
features
(words)

to d-
dimensional
vectors,
the same
as the one
described
in the
previous
paragraph,

or not?

~
v Vv
O = " ‘
Y unroll 4
U
X Xi1 Xj Xi+1

Figure 3.4: Graphical representation of a typical RNN and an RNN being unrolled

d-dimensional vectors for every word, which usually are word embeddings. Moreover, the input at time
step i is ;. The hidden layer returns a vector h; with context information about the sequence for every
step i in the input, by means of weight parameters, U and W, the input vector x; and the previous
hidden vector h;_1. And, the output layer returns a vector y;, also for every step ¢ which contains the
probabilities across the set of labels (and makes use of the weight parameter V).

A RNN is defined recursively, by means of a non-linear activation function f, typically a sigmoid or
tanh function, that takes as input the hidden vector h;_; and an input vector z; (and associated weight

parameters, U and W) and returns a new hidden vector h;:

where U and W are the recurrent layer weight parameters that are computed during training.
The network outputs a matrix of scores P. This matrix is composed of the network’s output vectors,
obtained from the output layer y, which represents the probability distribution over labels for each step 4

in the input.

yi = softmax(V - h;),

where V is a weight parameter computed during training. The softmax function computes the probability
distribution over the set of labels. P;; is the score of the j'" label of the i*" word in the sequence.

Thus, there exists a connection between the previous hidden vector and the current hidden vector
as well the weight parameters. We can say that this hidden or recurrent layer stores history information
which in theory allows the prediction of the output based on long range dependencies in the data.
However, in practice, RNNs fail to learn long range dependencies and are biased towards the most

(M Jrecent sequence inputs.

Long Short-Term Memory (LSTM) networks are a RNN variant that incorporate a memory-cell and,
5/6/19 thus, are capable of capturing long range dependencies. It is achieved by the use of multiple gates that

32

control the proportion of the input that should be given to the memory cell and the proportion of the
previous hidden vector that should be forgotten.

With the RNN or the LSTM, an hidden vector h; of a word 7 captures its left context. With a bidi-
rectional LSTM (bi-LSTM) network, both past features and future features can be taken into account for
prediction. A bidirectional LSTM consists on using two LSTMs, one that operates as described before
and that reads the input sequence in a left-to-right manner (forward LSTM), and another that reads the
sequence in reverse order, that captures the right context of a word (backward LSTM). A word’s hidden
vector h; is obtained by concatenation of each hidden vector generated by each LSTM, i.e., the left

context vector h'“/* and the right context vector h}*9".

Sequence labeling layer

The sequence labeling layer predicts the labels of the words in the original sequence. Each final
output y; label is predicted using the score matrix P output by the context encoding layer, or more
specifically, the bi-LSTM network, in the so called output layer or sequence labeling layer. The output
labels y; can be computed directly from the score matrix, but local choices would be made.

CRFs consider sentence level label information, and thus maximize the label probability for the com-
plete sentence. They typically have higher accuracy in labeling tasks, thus are widely used in this
context. The use of this layer will also allow using past and future labels to predict the current label. This
achieved by using a state transition matrix A, where A;; corresponds to the score of transitioning from
state (label) i to the state j. Considering y is a sequence of labels for the input sequence of words z, its

score is given by:

n n

score(y) = ZAyz‘,yH—l + Zplyq
=0 i=1
The Viterbi Algorithm can then be used to discover the label sequence y that has the maximum
score.
General Architecture

The standard neural model for NER is to combine a bidirectional LSTM network with a CRF to
form a BI-LSTM-CRF model. The architecture of this model is presented in Figure 3.5, adapted from
[27]. The model receives as input a sequence of words that are mapped to a sequence of word vector
representations e.g., word embeddings, in the embedding layer. These are given to a bi-LSTM which
generates two context vectors i.e., left context vector /; and right context vector r;, that are concatenated
in a vector ¢;, in the context encoding layer. This context vector is given to the sequence labeling layer,

i.e. CRF layer, and a label y; is returned for every word.

33

Sequence
Labeling Layer

Context
Encoding Layer

Embedding
Layer

Figure 3.5: Architecture of a BI-LSTM-CRF model

One of the first works that uses a bi-LSTM-CRF architecture for sequence labeling tasks, including
NER, is [28]. Their word embeddings are combined with hand-crafted features, including orthographic
features and context features. These hand-crafted features are passed directly to the output layer, the
CREF, instead of passing through the bi-LSTM layer. This accelerates the training while having similar
accuracy. A similar model was applied by [27], where no hand-crafted features were used. They use
character embeddings learned during training and concatenate them with word embeddings initialized
with externally pre-trained embeddings to obtain their actual word embedding.

More recent state-of-the-art works use deep learning for Named-Entity Recognition with new word
embedding techniques. Traditional word embeddings (e.g., Word2Vec [26], Glove [29] and fastText [30])
are static, meaning that a word’s representation is the same no matter its context i.e., surrounding words.
New word embedding techniques are dynamic, in the sense that the word’s representation is dependent
on its context i.e. the same word in different contexts will have different representations. BERT (Bidi-
rectional Encoder Representations from Transformers) [31] is a new distributed representation approach
that achieves state-of-the-art results for Named-Entity Recognition. It pre-trains bidirectional representa-
tions of words’ contexts i.e., conditions on both left and right context. Another state-of-the-art approach

for NER uses [32] flair embeddings that are character-level word embeddings dependent on context.

3.1.3 Tools

There are several tools available that are capable of performing NER. These tools can be black-box web
services or third-party libraries that provide pre-trained models or that enable to train a model. In the

rest of this section we present the NER tools we consider most relevant.

34

Moreover, NLTK'(Natural Language Toolkit) is a Python library for NLP. Among other tasks, NLTK
is capable of performing NER. NLTK supports Stanford NER, however it has its own NER model. This
model uses a Maximum Entropy (ME) algorithm and uses several features that help during the extraction

e.g., word shape, POS tag, prefix, suffix and context features. It has no support for the French language.

Polyglot® [33] is an NLP library that is capable of performing among other tasks, NER, with minimal
human intervention and knowledge. It creates models using data generated by distant supervision
using Wikipedia and Freebase (with focus onPerson, Location, Organization) for 40 languages, including
French. It also learns, for each language, distributed word representations i.e., word embeddings, using

data from Wikipedia.

3.1.3.1 Stanford NER

Stanford NER is a NER Java software tool that implements a CRF sequence model, along with a feature
extractor and options to define new features. It is also available in other programming languages through

modules, wrappers, interfaces or packages.

Additionally, it is included in Stanford CoreNLP [34], which is an annotation pipeline system that
provides other essential NLP tools besides Stanford NER, like the Stanford Parser or the Stanford POS
tagger.

The CRF implemented in the Stanford software is similar to the baseline local+Viterbi model in [35].
Here, the label decision at a particular position of the sequence only depends on a small local window,

as usual, and Viterbi is used to compute the most likely label sequence.

Different features are extracted °, including context features (e.g., words in a window), morphological
features (e.g., character n-grams), label sequences and conjunctions of features. Lexical features, more
specifically gazetteers, may also be used, and are included as files. Distributional similarity clustering
can also be used, where words are clustered based on their similarity context distributions. Moreover,
clusters contain (semantically or syntactically) similar words and the corresponding cluster IDs are used
as features, allowing the Named-Entity Recognition system to generalize better. There are several other

features and parameters that can be specified.

Furthermore, Stanford NER distribution includes several pre-trained models, but none for the French
language. However, it enables to train a new model using labeled data, and specifying the features to

be extracted or adding new features.

Thttps://www.nltk.org

2https://polyglot.readthedocs.io

Swww.nlp.stanford.edu/software/jenny-ner-2007.pdf and
www.nlp.stanford.edu/nlp/javadoc/javanip/edu/stanford/nlp/ie/NERFeatureFactory.html

35

3.1.3.2 SpaCy

SpaCy is a free, open-source Python library for NLP, capable of performing NER. The SpaCy NER
system uses a word embedding strategy with subword features and blossom embeddings, a deep Con-
volutional Neural Network (CNN) with residual connections and a transition-based named-entity parsing.

SpaCy approaches deep learning for NER in four steps*: embed, encode, attend and predict. In
the embed step, words are represented by context-independent dense vectors, called blossom embed-
dings. Hashed embedded representations of subword features are concatenated and fed to a multi-layer
perceptron to get a vector for each word. Afterwards, in the encode step, the word embeddings are en-
coded into context-sensitive representations using a trigram CNN. Residual connections are used, that
make the output of each convolutional layer of the CNN to be the sum of the actual output and its input.
The the goal of the attend step is to take the ouput of the previous step, a vector per word, and com-
pute a single summarized vector. The final step is the prediction step that uses a standard multi-layer
perceptron to predict the labels.

A transition-based system based [27] is used, where instead of labeling each word, the model directly
constructs representations of multi-token named-entities.

SpaCy has a pre-trained model for French that is capable of performing several tasks including NER
(trained with the WIkiNER corpus [36]). It is capable of detecting Person, Location, Organization and

Miscellaneous named-entities.

3.1.3.3 Apache OpenNLP

Apache OpenNLP is a machine learning open-source Java library for NLP tasks, including NER, that
is available through the Name Finder API. It offers several pre-trained models for English, Spanish and
Dutch, but not for French.

It is also possible to train new models using OpenNLP by providing it with data in the OpenNLP’s
training format. OpenNLP uses, by default, a Maximum Entropy (ME) model which can be changed
to a Perceptron or Naive Bayes. It is also possible to specify the number of iterations and the cutoff
value (named-entities that are found less times that the defined cutoff are ignored). Certain features are

extracted from the training data to be used by the model.

3.1.3.4 NeuroNER

NeuroNER [37] is an open-source program available online, that performs NER. It requires Python 3.5,
TensorFlow 1.0 and scikit-learn® and optionally BRAT, and can run either from the command line or from

a Python interpreter.

“4https://youtu.be/sqDHBH9IjRU
Shttps://scikit-learn.org

36

NeuroNER is composed of two main components: a NER engine (NER engine) and an interface
with BRAT. BRAT® is a web-based tool for text annotation, that enables creating, changing or viewing
annotations. The NER engine receives as input three sets of labeled data: train, validation and test sets.

An LSTM is used in the NER engine, composed of three layers: the character-enhanced token-
embedding layer, the label prediction layer and the label sequence optimization layer. The character-
enhanced token-embedding layer maps each token in a sequence to character-enhanced token em-
beddings, by combining word and character embeddings. The sequence of character-enhanced token
embeddings is passed to the label prediction layer that outputs the probability distribution over the set
of labels for each token. Finally, based on the sequence of probability vectors, the label sequence op-
timization layer outputs the most probable sequence of labels for the original sequence of tokens. All
layers learn jointly and the user can specify several parameters to be used during the training process.

NeuroNER supports monitoring of the network during the training process, via plots generated by
NeuroNER itself, showing the learning curve of the model, and via TensorBoard (TensorFlow’s visual-
ization toolkit), showing the real time performance of the model over the test set.

NeuroNER also provides to the user a set of pre-trained models and pre-trained token embeddings.
None of these are in French. It allows a user to train their own model by providing labeled data and,

optionally, token embeddings.

3.1.3.5 Flair
3.1.3.6 AllenNLP
3.1.3.7 IBM Watson NLU

IBM Watson Natural Language Understanding (IBM Watson NLU) is a web service with several NLP
capabilities that enable to analyze text and extract metadata, such as named-entities (and relationships
between entities). Additionally, it supports the French language.

To use the NLU API, an HTTP Post request needs to be made to the service using an API key.
The IBM Watson Knowledge Studio’ can be used to extend the NLU with customized models that can
identify customized information.

The free version of the service supports the extraction of 30,000 NLU items per month, where one
NLU item corresponds to a group of 10,000 characters and a feature e.g., named-entities. It also limits
the use of only one customized model. Other service plans can be acquired to increase the values or

remove the constraints.

Shttp://brat.niplab.org
7https://www.ibm.com/watson/services/knowledge-studio/

37

3.1.3.8 Open Calais

Open Calais® is a black-box web service developed by the Text Metadata Services (TMS) group at
Thomson Reuters. Moreover, it attaches semantic metadata tags to text that it receives as input. It uses
a combination of NLP, machine-learning and customized pattern-based methods for processing the input
text and extracting semantic information. Among other processes, it performs NER and RE, based on a
pre-defined set of named-entities and relationships.

It supports French and is able to extract named-entities in French texts, however, it is not able to do
the same for relationships. Open Calais requires an API access token that is used to make an HTTP
Post Request that sends the desired input document and obtains its semantic metadata tags.

It supports 5,000 requests per day, each with a maximum request input size of 100KB. Moreover,
about a second should be left between requests. It is possible to increase these values by subscribing
to other versions of Open Calais.

Open Calais detects each named-entity in the text but is also capable of grouping multiple named-
entity instances that refer to the same named-entity, by comparing the instances text strings. For French
input text, it is able to extract named-entity types such as: City, Country, Organization, Person. It is also

capable of generating a confidence score for some types of named-entlties.

3.1.3.9 Discussion

Black-box | Third-party library | French support
Stanford NER X
SpaCy

Apache OpenNLP
NeuroNER

Flair

AllenNLP

IBM Watson NLU
Open Calais

X | X | X | X | X

3.2 Relationship Extraction

Relationship Extraction (RE) is an IE task whose aim is to identify semantic relationships between two
or more entities in natural language text. Most work on RE focuses on binary relationships, which are
relationships that occur between two entities. Multi-way relationships, occur between three or more

entities. Moreover, Multi-way RE is also known as record extraction. The focus of this work will be

8http://www.opencalais.com

38

on binary relationships. In binary RE, relationships are extracted from natural language text, typically
from a sentence, in the form of triples. The triples can be defined as relationship instances of the form
(ent1, ents, rel), where ent; and ent, are named-entities and rel is the relationship between them, e.g.,
(Barack Obama, Honolulu, birthPlace) extracted from the sentence "Barack Hussein Obama Il, né le
4 aolit 1961 & Honolulu (Hawai), est un homme d’Etat américain”, which roughly translates to "Barack
Hussein Obama Il, born August 4, 1961 in Honolulu (Hawaii), is an American statesman”. Moreover, RE
can be seen as a multi-class classification problem, because the goal can be described as predicting a
relationship type, out of multiple types, i.e., classes, for each entity pair.

In Section 3.2.1, relevant features for RE are presented. Moreover, in Section 3.2.2 existing tech-
niques for RE, relevant to the scope of this thesis are detailed. Furthermore, in Section 3.2.3, several

software tools that are able to perform RE are described.

3.2.1 Features

The following features are useful for RE [3]:

Surface Tokens: tokens between and around the entities. They are useful because they contain

clues for the relationship held between the entities

POS tags: important because verbs are good indicators of the relationship between entities (that

tend to be nouns or noun phrases)
» Parse Tree: more useful than just POS tags, because it shows how the words are related
» Dependency Graph: is just as adequate as a parse tree and less expensive to create

It is also possible to extract a dependency path from a dependency graph. A dependency path
between two nouns in the graph, i.e., between the two named-entities in the sentence, consists on the
path obtained by traversing the dependency graph and obtaining the sequence of words and/or their

classes following the orientation of the graph from one entity to the other.

3.2.2 Techniques
There are various types of techniques than can used to perform RE [6]:

1. Rule-based methods, where patterns are manually created to extract the relationship between

two entities.

2. Supervised methods, that require labeled training data to train conventional classifiers to predict
the relationship between two entities in a sentence. They can be divided into feature-based, kernel-

based and neural-based.

39

3. Semi-Supervised methods, also referred to as bootstrapping (and sometimes weakly super-
vised). These methods use a small amount of seed relationship instances or seed patterns, to
iteratively extract more relationship instances and patterns from a large amount of unlabeled data.

They are explained in Section 3.2.2.1.

4. Distantly Supervised methods, where an existing database of relationships, i.e., a knowledge
base, is used to get relationship instances. These instances are used to automatically label sen-
tences where the respective named-entities occur together, that are then used to train a classifier.

These techniques are detailed in Section 3.2.2.2.

5. Unsupervised methods, also referred to as Open Information Extraction. Relationships are ex-
tracted without labelled data or set of pre-defined relationships. It is often targeted for doing RE
over the web. Moreover, relationships are sets of strings (typically containing a verb) that are

mapped to canonical forms. More detail on this type of techniques is given in Section 3.2.2.3.

In the following Sections we will be focusing on the RE techniques that do not require manually
labeled data or a high amount of linguist knowledge, which are the most relevant and that fit the scope

of this thesis, i.e., semi-supervised, distantly supervised and unsupervised methods.

3.2.2.1 Semi-Supervised Methods

Supervised methods require a large amount of labeled data, which usually is not available. Moreover,
manually labeling enough examples to be able to train a classifier is expensive. To solve this, semi-
supervised methods use a limited amount of labeled data and a large amount of unlabeled data.
Semi-supervised RE, trought the use of an iterative bootstrapping process, assumes that we have a
few seed triple instances of the target relationship(s) and a large unlabeled text corpus. For example,
if the target relationship is "birthPlace", some seed entity tuples could be (Barack Obama, Honululu),
(Albert Einstein, Ulm), (Kate Hudson, Los Angeles). A bootstrapping procedure will extract similar entity
pairs that have the same target relationship, e.g., (Elvis Presley, Mississippi). Moreover, a bootstrapping
procedure [6] takes the seed triple instances as input and looks for sentences, in the unlabeled text cor-
pus, where the entities occur together. Then, it takes the context of the sentences, e.g., words surroding
entities, and generates patterns that are then used to extract new triple instances. The process repeats
until reaching a stopping criteria that can be, for example: an acceptable number of triple instances,
the number of new triple instances generated in an iteration is too small or no new triple instances are
learned. It is also possible to start the process by using seed patterns. A phenomena called semantic
drift can commonly occur in these type of approaches: when a wrong pattern extracts wrong instances

which will lead to the generation of wrong patterns, making the extracted instances "drift".

40

DIPRE [38] (Dual lterative Pattern Relation Extraction) was one of the first bootstrapping techniques
to be proposed. This technique makes use of the pattern-relation duality: good patterns extract good
instances, thus good instances generate good patterns. In the experiments reported by the authors,
they have the goal of extracting author-book relationship instances from web documents. As initial

seeds, they used five pairs of (author, book) instances, e.g., (Charles Dickens, Great Expectations).

The DIPRE algorithm starts by finds all occurrences of the seed instance tuples (enty, ents) in the
web documents. It collects the order in which ent; and ent, occur in the sentence, as well as their
context: the URL of the web document and the surrounding words i.e., the words before the entities
(prefix), the words in between (middle), and the words following the entities (suffix). Then, patterns
are generated and defined by: (i) the order of the entities, (i7) the prefix of the URL page and (iii) the
surrounding words (prefix, middle and suffix), i.e., (order, url-prefix, prefix, middle, suffix). Patterns are
used to find and extract more pairs of instances that are added to the initial seeds, and the process
repeats. A pair (enty, ente) matches a pattern if it has the same order as the pattern, the URL of the
page matches url-prefix and it contains a text segment that matches the following expression, depending
on the order: “prefix, ent,, middle, ents, suffix* or *prefix, ento, middle, ent,, suffix*, e.qg., "Book was

written by Author", "Book by Author", etc.

An heuristic is used to avoid semantic drifting, by making sure that patterns are not too general,
because that means instances that do not correspond to the target relationship may be extracted. The
heuristic consists in measuring the specificity of the pattern and rejecting patterns with a low specificity.
The specificity of a pattern p is defined as: specificity(p) = |p.urlpre fiz||p.prefix||p.middle||p.suf fiz|,
where |x| corresponds to the length of x. Moreover, a pattern p is valid if speci ficity(p) = n is above a

certain threshold ¢, where n corresponds to the number of occurrences that match pattern p.

Snowball [39] is based on the DIPRE approach and introduces new improvements, namely a new

strategy for pattern generation and tuple extraction and strategies for scoring patterns and tuples.

One of the key differences between DIPRE and Snowball is that Snowball patterns include the target
named-entity types: with the pattern "Organization is located in Location", any pair of entities with the
words "is located in" between them would match the pattern when using DIPRE. However, with Snowball,
only entities that are of the target type, in this case, Organization and Location, would match the pattern.

To achieve this behavior, it is necessary to label the text being analyzed with named-entities, using NER.

Patterns are represented by a tuple composed of the named-entity types, and the left, middle and
right contexts (i.e., surrounding words of the entities like the prefix, middle and suffix in DIPRE): (left,
type1, middle, types, right), where type; and types correspond to the named-entity types of the first and
second occurring entities. These contexts are represented by weight vectors, i.e., a vector associating
weights to the words in the given context. Typically, the middle context gives more clues regarding the

relationship between two entities, so its vector weights will have higher values than the ones from the left

41

or right context vectors. In fact, using the weight vector approach, patterns are more flexible and minor
variations on occurrence’s contexts will still match a pattern. To measure the similarity between patterns
or instance tuples it is necessary to compute the sum of the inner products between each context vector.

Snowball then uses the patterns to find new instance tuples: it finds all occurrences of the target
named-entity types in the corpus e.g., Organization and Location. Next, it collects their contexts and
transforms them into vectors. Additionally, it measures the similarity between each occurrence tuple and
all existing patterns. A tuple is added to the initial set of instanece seeds if the similarity between it and
at least one pattern is higher than a given pre-defined threshold.

The most relevant improvement of Snowball over DIPRE is the pattern and tuple evaluation that
enables to control the problem of semantic drift. Snowball measures the confidence of each pattern
it generates and only keeps patterns with high confidence, so it does not consider patterns that will
most probably extract wrong tuples. The same is done in regards to tuples, because wrong tuples may
generate inappropriate patterns, which in turn will extract more wrong tuples.

Some of the following works [40] include [41] that uses bootstrapping to automatically learn surface
patterns for Question-Answer (QA) systems. The answers for some question types, which express rela-
tionships, e.g., "birthPlace”, with questions like "Where was Person born?", follow patterns, e.g., "Person
was born in Location". They propose a bootstrapping approach to automatically learn the patterns start-
ing from a few QA seed pairs. Furthermore, [42] propose Espresso, a bootstrapping system to learn
relationships such as "partOf" or "isA". It uses generic patterns and filters incorrect instances, making
use of the pattern learning algorithm of [41]. Moreover, [43] explore the use co-reference information
(all expressions that refer to a given entity in the text) to improve bootstrapping results, in particular the
recall. And, [44] focus on exploring different word cluster features for RE, where words that occur in
similar contexts are grouped in the same cluster.

Although the different approaches try to solve semantic drift, the problem still ocurs. Moreover,
bootstrapping requires having a set of seed instances for each relationship type one wants to extract,

and those can influence the performance of the algorithm.

3.2.2.2 Distantly Supervised Methods

Distant supervision [45] was proposed as an alternative paradigm to RE that does not require labeled
training data, which is expensive to produce. It uses the idea of bootstrapping, by similary using seed
relationship instances. However, instead of using a small amount of seed instances or patterns to
start the process, it uses a large database that contains relationships, i.e., knowledge base (KB), e.g.,
Freebase [46], now Wikidata [47], DBPedia [48], Yago [49]. The assumption (known as the distant
supervision assumption) is that, if a pair of named-entities in the KB hold a certain relationship, then any

sentence that contains both entities is probably expressing that relationship. Following the assumption,

42

for every triple (enty, ents, rel) in the KB, sentences containg the entity pair are collected from a large
unlabeled text corpus, from the same domain as the KB. Consider the example in [6], where we have a
KB of relationships. For the triple (Albert Einstein, Ulm, birthPlace), sentences like "Einstein was born
in Ulm", "Einstein, born (1879), UIm", "Einstein’s birthplace in Ulm" will be extracted from the corpus.

Furthermore, features are extracted from all the sentences that contain the entities, and used to
create training instances to train a classifier. Additionally, the process requires NER to, first, identify
the named-entities e.g., Person, Organization and Location, in every sentence of the corpus. Negative
training instances i.e., instances expressing the nonexistence of a relationship between two entities, are
also necessary. These are created by randomly taking entity pairs from the KB that do not occur together
in a relationship, and applying the same procedure.

The approach proposed by [45] used Freebase as the KB, and collected sentences from Wikipedia
articles. They used a multi-class logistic regression classifier, that receives as input a pair of entities
and a respective feature vector. The features extracted from all the sentences, for a given entity pair,
are aggregated in a single feature vector. Different features were extracted from each sentence using
a conjunction of lexical features, e.g., surface words and their part-of-speech tags, and a conjunction
of syntactic features, e.g, dependency path between the two entities in the sentence, plus the named-
entity classes of the entities. They came to the conclusion that using a combination of both lexical and
syntactic features yields the best performance. Considering the sentence "Scientist Einstein was born

in Ulm", an example lexical conjunctive feature obtained from the sentence could be:

<Left = [Scientist], E1 = Person, Middle = [was/VERB born/VERB in/ADP], E2 = Location, Right = []>

Altough this paradigm allows the automatic creation of training data, following the distant supervision

assumption generates noisy instances because:

1. not all sentences containing both entities express the relationship in the KB, which leads to the
creation of false positive instances. For example, consider the relationship triple (Barack Obama,
Honolulu, birthPlace) and the sentence "Obama returned to Honolulu to live with his maternal
grandparents”. Altough it contains both entities in the triple, the relationship expressed in the

sentence between them is different.

2. if the KB is incomplete, i.e., does not contain all entity combinations for a given relationship, when
creating negative instances, false negative instances will be generated. For example, if two entities
are related in "the real world" but a triple that relates them is not present in the KB, they may be

used for generating negative instances.

3. two entities may hold more than one relationship between them, meaning that a sentence con-

taining both entities may not express the relationship from the current triple, from the KB, being

43

processed. For example, if a Person was born and died at the same Location, then, there will be,

at least, two relationships between the two entities.

When using a KB, e.g., Freebase like [45, 50], where the relationship instances are derived from the
text corpus used for training, e.g., Wikipedia, it is easy to align the instances to the text. Moreover, the
work of [51] states that the noise generated by the distant supervision assumption is even more evident
when using text not directly related to the KB, a harder and more real scenario. The extraction of new
relationships will not always be from text from which the training KB is derived from. In both cases,
and more evidently in the latter, named-entities may occur in the same sentence and the sentence not
express the relationship between them. To fix this problem, they propose to relax the distant supervision
assumption, creating the expressed-at-least-once assumption, that says: if a pair of named-entities is
related in the KB, at least one sentence containing both entities might express the relationship. The
distant supervision problem becomes a multi-instance learning (MIL) problem, where the sentences
are grouped in bags, for each entity pair, that, according to the assumption, will contain at least one
positive example for their relationship. Furthemore, this means that the RE stops being on sentence-
level, where a relationship is predicted for each input sentence, to start being on a bag-level, where
a relationship is predicted for each entity pair or bag. They train a graphical model on data created by
applying their proposals to the New York Times (NYT) corpus, using Freebase as the KB. This was when
the considered "standard" distant supervision NYT corpus (for English) was created.

The previous model is multi-instance single-label, thus does not capture that the same entity pair may
have more than one relationship between them. Moreover, [52] present MultiR, a probablistic graphical
model of MIL that allows a pair of entities to have multiple labels, i.e., more than one relationship,
outdoing the previous model. MIML-RE [53] improves by proposing a multi-instance multi-label graphical
model model that jointly models, for a pair of entities, all instances and all their labels, i.e., relationships.

Most features of these models are derived from NLP tools, that introduce errors and noise into the
models. [54] introduced deep learning with multi-instance learning to distant supervision using Piecewise
CNNs (PCNN), inspired by the work of [55] for supervised RE, to automatically learn the represention of
instances, thus avoiding the need to design and engineer features that resort to NLP tools. In RE labels
are not predicted for each word in an input sentece, instead, all local features need to be considered
in order to make a global prediction and the convolution is a way to naturally join those features. A
Piecewise CNN, i.e., PCNN, is a variant of a CNN with an added piecewise max pooling layer, that has
the goal of capturing structural information between the two named-entities expressing a relationship in
the input sentence. Furthermore, they showed that using a PCNN if more beneficial that using CNNs.

Moreover, [56] propose a sentence-level attention-based model. A CNN (or PCNN) is used to
contruct a sentence representation, and, then, to alleviate the noise caused by the noisy instances,

sentence-level attention is used to select, from all sentences of a given entity pair, the ones that actually

44

express the relationship. They show that PCNN-ATT performs better than CNN-ATT.

RESIDE [57] propose the use of side information that can be obtained from KBs, to soflty impose
contraints when predicting relatioships. It makes principled use of (i) entity types, because the types
of the entities involved in a relationship are constraint by it, and (ii) relationship aliases, which are
various terms for expressing a given relationship. It also uses Graph Convolution Networks (GCNSs) to
encode syntatic information and improves the performance even without the use of side information. [58]
consider both intra-bag and iter-bag attention to improve upon the noise that exists in distant supervision
data. Some of the most recent state-of-the-art work, like HRERE [59], propose to unify the learning of
RE and KB embeddings (KBE) to improve RE itself. KBE is task whose goal is to represent the KB

entities and relationships in a vector space.

3.2.2.3 Unsupervised Methods

The methods presented in the previous sections only extract relationships that are in a a pre-defined set
of target relationship types. Moreover, the techniques either need a corpus annotated with entities and
relationships, hand-crafted rules, seed relationship instances, or a database of relationships, i.e., KB.
Either way, data annotated in some form is required; only the relationships annotated in the corpus, in
the rules or seeds, or present in the KB are extracted. These approaches are not able to discover new
relationships and thought and effort is necessary for each relationship type one wants to extract.

Unsupervised methods, also denoted as Open Information Extraction (Open IE) [60] methods, do
not require any annotated data nor a defined set of target relationships. Instead, an Open IE technique,
automatically extracts all relationship types it is capable of finding in a text. Additionally, these methods
have the goal of making the extraction domain-independent, while being efficient and fast at extracting
relationships from large domain-heterogeneous corpus i.e., the Web. A generic way of expressing rela-
tionships between two entities, commonly refered to as arguments in Open IE, is needed; [60] proposes
the identification of relationship phrases which are phrases that typically correspond to relationships.
We will be following [61] to introduce some works in this field.

Open IE was introduced with TextRunner [60], which implements a self-supervised learning tech-
nigue. A Naive Bayes classifier is trained to predict if a sentence expresses a relationship (positive
example) or not (negative example). To train the classifier, a small set of sentences was labeled as
positive or negative using heuristics based on dependencies generated by a parser. The sentences are
represented using shallow features, i.e., lightweight, e.g., POS tags. Then, the classifier is used during
extraction as the first step, where only positive sentences are kept and, from those, candidate triples are
created by identifying the relationship phrase and pairs of noun phrases (NP) in each sentence. In [62]
the same approach was aplied, however a CRF model is trained instead of a Naive Bayes classifier. The

CRF model learns to identify the spans of words that likely express the relationship between the entities.

45

The Wikipedia-based Open Extractor (WOE) [63] also uses a self-supervised learing approach. WOE
obtains its labeled sentences by heuristically matching attribute-value pairs in Wikipedia’s articles in-
foboxes® to sentences in the article. They experiment with training a CRF on shallow features like [62]
and another on features from dependency-parse trees, which allow capturing long-range dependencies.
The latter, at the cost of speed, increases the results when compared to using shallow features.

The previous two systems made use of automatically learned data; ReVerb [64] is an Open |IE system
that improves upon the previous approaches using hand-crafted rules. It proposes the implementation
of a syntactic and a lexical constraint for extraction of relationships expressed by verbs. ReVerb syntati-
cally constraints the relationship phrase (by means of a regular expression), using POS tags, to be the
longest sequence starting with a verb, optionally followed by a preposition or nouns adjectives, adverbs,
prononouns or determinants and a preposition. A lexical constraint is also applied in order to elminate
long and rare relationship phrases. Only relationships that occur a k£ number of times with different ar-
guments (i.e., entities) are considered. The nearest NP to the left and right of the relationship phrase
are the arguments of the relationship.

OLLIE [65] is the first Open IE system that extracts relationships not solely mediated by verbs, like
ReVerb, but also mediated by nouns, adjectives and other structures. It joins the ideas of using automat-
ically learned data with ReVerb. A set of high-precision ReVerb relationship triples is used to bootstrap
sentences based on them. Then, it uses the sentences to learn a set of extraction patterns based on the
dependency tree of the sentences. Sometimes, relationships are only valid under a certain condition or
attribution, i.e., are not factual, which is also expressed in the sentence where the relationship was iden-
tified. With ReVerb, relationships that are not factual are often extracted because only a local analysis
of the sentence is performed. OLLIE adds context information to the extracted relationships, regarding if
and which condition or attribution they are under. OLLIE’s patterns are derived from ReVerb seeds, so,
altough it is able to extract noun relationships, the coverage on them is limited. Moreover, ReNoun [66]
is an Open IE system that complements previsous systems by focusing on extracting noun-based rela-
tionships and extracts many relationships that do not exist in OLLIE.

KrakeN [67] is the first system built for the purpose of n-ary relationships. It uses hand-crafted rules
based on dependency parse trees to obtain the relationship phrases and arguments. EXEMPLAR [68]
uses a smiliar approach but in addition uses the ideas of Semantic Role Labeling (SRL), to assign
to the arguments of the sentence a semantic role, e.g., agent, instrument, etc. OLLIE’s successor,
OpenlE4 [69], combines two systems: SrllIE [70], that uses SRL using the verb as the relationship phrase
and the role labeled arguments as the entities, and RelNoun [71] that extracts noun-based relationships,
incorporating knowledge about compound relational nouns and demonyms '°.

The use of contextual sentence decomposition (CSD) is explored in the CSD-IE system [72]. For a

Shttps://en.wikipedia.org/wiki/Help:Infobox
9Demonyms are word expressions derived from locations to denote the residents of that location, e.g., French, Japanese, etc

46

OLLIE:
(1) (Republican candidate Mitt Romney; will be elected President in; 2008)
enabler=If he wins five key states]

(2) Republican candidate Mitt Romney; will be elected; President)
(3) Mitt Romney; be candidate of; Republican)

(
[
(
[enabler=If he wins five key states]
(
(

(4) (Mitt Romney; be candidate for; Republican)

(5) (he; wins; five key states)

ReVerb:

(6) (he; wins; five key states)

(7) (Republican candidate Mitt Romney; will be elected President in; 2008)
ClausIE:

(8) (he; wins; five key states)

(9) (Republican candidate Mitt Romney; will be elected; President in 2008 If he wins
five key states)

(10) (Republican candidate Mitt Romney; will be elected; President in 2008)
Graphene:

(11) #1 CORE (Mitt Romney; will be elected; President)

("a) CONTEXT:NOUN BASED Mitt Romney was a republican candidate

("b) CONTEXT:TEMPORAL in 2008

("c) CONTEXT:CONDITION #3

("d) CONTEXT:NOUN BASED #2

(12) #2 CORE (Mitt Romney; was; a republican candidate)

(13) #3 CONTEXT (he; wins; five key states)

Figure 3.6: Open IE systems’ extractions for the sentence "If he wins five key states, Republican candidate Mitt
Romney will be elected President in 2008"

given sentence, CSD will determine its contexts, i.e., sub-sequences that "belong together" in a semantic
way. Each context contains a relationship that may depend on the other contexts, thus the idea of nested
relationships is introduced. NestlE [73] more recently pick up on the idea of nested relationships.

More recent approaches are clause-based, where triple relationships are extracted from individual,
independent and simplified sentence clauses. Clauses are groups of words, that are part of a sentence,
and express some information. They can contain a subject, a verb, direct and inderect objects, com-
plements and adverbials. ClauslE [74] uses dependency parsing to indentify the set of clauses in each
sentence. Then, it tries to identify their type based on its constituents. Finally, for each clause, based on

its type, the relationship triple or triples are generated to represent the different pieces of information.

Stanford Open Information Extraction (Stanford OpenlE) [75] shifts the focus from building a large
set of extraction patterns to build a classifier that is able to extract clauses from longer sentences. The
system starts by splitting the input sentence into a set of independent clauses using the classifier. After-
wards, each clause is maximally shortened, i.e., minimized, while maintaining the necessary context, to

produce shorter sentence fragments, that are easy to segment into relationship triples using patterns.

MinlE [76] is a recent Open IE system built over ClauslE, which they state, produces extractions
that are too specific. Just like Stanford OpenlE, it tries to minimize both the relationship phrase and

arguments, by removing unnecessary and too specific parts. It also annotates each extracted relation-

47

ship with semantic annotations, like OLLIE, with context information about polarity, modality, attribution
and quantities. Graphene [77] is another recent Open IE system that starts by simplifying the complex
structure of sentences, removing unnecessary parts. From this simplified structure it is able to extract
meaningful n-ary relationships. These are enriched with contextual infomation and semantic links are
added to connect them. Also recently, [78] assume a supervised learning approach to Open IE. They
formulate Open IE as sequence labeling problem and train a bi-LSTM model to predict a label for each
token in a sentence (entity, argument or other), using a modified variant of the QA-SRL dataset [79].
Moreover, [80] propose a neural Open IE approach, that does not resort to NLP tools that introduce
errors in the systems. A enconder-decoder framework is used, where the encoder takes the input se-
quence and encodes it in a context vector, used by the decoder to create the labeled output sequence.
The train data is obtained by giving OpenlE4 sentences from Wikipedia to extract relationship triples.
The Figure 3.6, adapted from [61], shows the extractions from different Open IE systems for the
sentence: "If he wins five key states, Republican candidate Mitt Romney will be elected President in

2008". It is possible to get an ideia of the kind of extractions produced by different Open IE systems.

3.2.3 Tools

There are several software tools available for performing RE. These tools can be divided in the following
types: (i) black-box web services, (i7) Open |IE systems and (iii) third-party libraries that distribute pre-
trained models and also allow the users to train their own model. Most of the RE tools available work
exclusively for English. This Section describes the tools that we consider the most relevant.

We found a third-party library, Stanford Relation Extractor'', that implements a supervised RE model
[81] (for English), included in Stanford’s CoreNLP [34] set of tools. It also allows training new models by
providing labeled data. jSRE'? is another tool that implements a supervised machine learning technique
that allows one to train, again, by providing labeled data.

Open Calais is a black-box web service, that we already described in Section 3.1.3, capable of per-
forming RE for English. AllenNLP, which we also described in Section 3.1.3, includes a re-implementation
of an Open IE system [78] that we described in Section 3.2.2.3. We also found more OpenlE systems

and black-box web services, that we will not be including in this Section.

3.2.3.1 Stanford OpenlE

Stanford Open Information Extraction (Stanford OpenlE)'? is a Java software implementation of an Open

IE system for English whose algorithm [75] was described in Section 3.2.2.3. Its most recent version is

" https://nlp.stanford.edu/software/relationExtractor.html
2https://hit-nip.fok.eu/technologies/jsre
13https://nlp.stanford.edu/software/openie.html

48

available through Stanford CoreNLP.
For each sentence, the system returns relationship triples along with the confidence of the extraction

(confidence, subject, relation, object), where the subject and object are the named-entities.

3.2.3.2 TextRazor

TextRazor'* is a black-box web service that performs several NLP tasks using machine learning com-
bined with several repositories, e.g., with named-entities, to parse, analyze and extract semantic meta-
data from text. It is capable of performing NER and RE, altough the latter, only for English.

To use the TextRazor REST API, you simply use an key to make an HTTP Post request to the API.
TextRazor also offer SDKs for Python, PHP and Java, built on top of their API. Moreover, the free plan

allows 500 requests per day and at maximum 2 concurrent requests.

3.2.3.3 IBM Watson NLU

IBM Watson Natural Language Understanding (IBM Watson NLU) is a web service, already described
in Section 3.1.3, as a tool capable of extracting meta-data from text including named-entities and rela-
tionships between them. In particular for French, and some other languages, the system is capable of
extracting several relationship types such as'®: bornAt, diedAt, locatedAt, ownerOf, residesIn, spouseOf.

For each relationship detected, the system returns the sentence that contains the relationship, the
relationship type, the named-entities involved and a confidence score for the relationship. As with other

black-box web services, it has limitations, particulary on the free version.

3.2.3.4 ReVerb

ReVerb is an Open IE system, whose algorithm was described in Section 3.2.2.3. The KnowltAll group
at the University of Washington has developed and released a software implementation of ReVerb,
and is available for download'®. It is an Open IE tool, which extracts binary relationships from English
sentences at a Web-scale i.e., large scale. It is implemented in Java and can be executed from the
command line or included in a Java project.

It receives as input a file composed of sentences. For each sentence given as input, ReVerb outputs
a tuple (argument,, relationship phrase, arguments), i.e., the two named-entities and the relationship
between them. It can also obtain and output the confidence score it has on each extraction. Other

metada about the extraction can also be obtained e.g., POS tags of the sentence’s words.

4https://www.textrazor.com/
5https://cloud.ibm.com/docs/natural-language-understanding ?topic=natural-language-understanding-relation-types-version-2
18http://reverb.cs.washington.edu/

49

We also found a French adaptation of ReVerb [82], developed by the RALI team at the Université
de Montréal and that is available in GitHub'”. RALI modified ReVerb, to use French statiscal models,
instead of the English ones used by ReVerb, and changed the regular expression used for extracting the
relationship phrase to work for French. Contrary to the original ReVerb system, the French adapation is

not able to provide a confidence score for the extractions.

3.23.5 OLLIE

OLLIE was also developed by the KnowltAll group, and is available for download'®. The algorithm was
described in Section 3.2.2.3. Like ReVerb, it is an Open IE tool for extracting binary relationships from
English sentences. Moreover, it is implemented in Java and can be executed from the command line or
added to a Java Project.

The system receives as input a text file where each line is a unique sentence. For each sentence, it
returns a tuple, (argumenty, relationship phrase, arguments). However, it is also capable of capturing
and outputing enabling conditions and attribution clauses. An enabling condition is a condition that
the extraction depends on to be true e.g., "if he wins five key states" in the sentence "If he wins five key
states, Republican candidate Mitt Romney will be elected President in 2008" in Figure 3.6. An attribution
clause states the entity that asserted the extraction and the verb in that context e.g., "early astromners"

and "believe" in the sentence “Early astronomers believed that the earth is the center of the universe”.

3.2.3.6 OpenNRE

OpenNRE [83] is an extensible toolkit that provides a framework to implement Neural RE (NRE) models.
It is soon to be deployed as Python package'®. It includes steps of data processing, model training and
experimental evaluation. English pre-trained models are available.

It allows training typical NRE models for sentence-level, bag-level, and others, although, it is specially
tailored for the supervised sentence-level scenario. Furthermore, its extensibility allows for an easy
implementation of new RE models, using OpenNRE. In particular for bag-level models, it allows training
a CNN or a PCNN with or without attention. Moreover, [54] showed that PCNN perform better than
CNN and, [56] showed that a PCNN with attention, i.e., PCNN-ATT, suprasses a CNN with attention,
i.e., CNN-ATT, as we detailed in Section 3.2.2.2.

OpenNRE allows to easily make experiments and research different model settings. They also pro-
vide typical metrics for evaluation of the models in the different RE scenarios. Additionally, it facilitates

the deployment of the models to be used in "real-world" applications.

17 https://github.com/rali-udem/reverb-french
8https:/knowitall.github.io/ollie/
9https://github.com/thunlp/OpenNRE

50

3.2.3.7 Discussion

Black-box | Open IE system | Third-party library | French support
Stanford OpenlE X
TextRazor

Open Calais

IBM Watson NLU
ReVerb

OLLIE

AllenNLP
OpenNRE X

We only found two tools capable of performing French RE off-the-shelf: IBM Watson NLU and the
French adaptation of ReVerb. The first is a black-box web service and the latter an Open |IE system.

Moreover, TextRazor and Open Calais are other black-box tools that are only capabale of dealing
with French texts.

Stanford OpenlE, ReVerb, OLLIE are all Open IE systems. Except for ReVerb which has an adapa-
tion for French, the systems are only capable of dealing with English texts. Moreover, AllenNLP, which
can be seen as a third-party library, makes available an Open IE implementation.

OpenNRE was the only third-party library that we found, that besides allowing to train supervised
machine learning models, i.e., sentence-level training, also implement bag-level training, a widely used

setting for distant supervision. The techniques it implements for RE are neural-based.

51

Creating a French NER model

Contents
41 Pipeline e 53
4.2 Datasets i i i i i e e e e e e e e e e e e e 54
4.3 Pre-proCessSiNg . - o o v v v v v v e e e m e e e e e e e e e e e 58
4.4 Evaluationmethodology i ittt e e 65
45 Modelselectionttt e 66
4.6 Modelevaluation. i e e g
4.7 Finalmodelcreationttt i 72

52

The goal of this Chapter is to describe the approach that we took for developing a Named-Entity
Recognition (NER) solution to integrate CONNECTIONLENS.

The approach for performing NER may consist in using a software tool or implementing a technique
from scratch. Due to the availability of a great amount of software tools that can work for French, there
is no need to implement a technique from scratch. Moreover, software tools can be distinguished in two
forms: (z) black-box web services or (iz) third-party libraries.

Black-box tools typically support multiple languages and many include French. They also do not re-
quire having labeled data. However, they impose constraints that are not desired for CONNECTIONLENS.
Third-party libraries provide pre-trained machine-learning models or enable to train a model. In general,
they have pre-trained models, at least, for the English language. However, SpaCy and Flair are the only
tools that have French pre-trained NER models available.

Since we found several French datasets annotated with named-entities, we decided to train our own
French NER supervised machine-learning model using two third-party libraries, i.e., SpaCy and Flair, to
see if we can improve upon their pre-trained models. We chose these tools because they use recent
deep-learning based state-of-the-art techniques. We created a distinct model for each tool and selected
the one that performs better.

The remainder of this Chapter is organized as follows: Section 4.1 presents the pipeline for creating
our French NER model. Moreover, Section 4.2 describes the datasets used to train the models. The
pre-processing of each dataset, their combination and their posterior division in sets, is described in
detail in Section 4.3. Additionally in Section 4.3, each dataset is explored, so we can learn about their
characteristics. Models are evaluated throughout the Chapter, and the evaluation methodology and
metrics used are explained in Section 4.4. To obtain the best possible model for each tool, we perform
model selection, which is detailed in Section 4.5. Each tool’s selected model is evaluated using the test
set, in Section 4.6. Finally, in Section 4.7, according to the results of the previous Section, a new model

is created using the complete dataset.

4.1 Pipeline

The pipeline that enables the creation of our NER model is represented in Figure 4.1. The pipeline
begins by subjecting each of the datasets (i.e, Quaero Old Press, KB Europeana Newspapers and
WIkiNER) to a pre-processing step. This pre-processing step comprises several sub-steps that may
include mapping to another encoding scheme, conversion to another format, tokenization, etc. Then,
the datasets are combined to form a combined dataset, with the goal of providing the models with
as much information as possible for learning. The combined dataset is divided randomly, in terms of

sentences, in a train, development and test set.

53

NS L)

Quaero Old Press E Train set l

N
R
N
AN

Model selection

: AN L |, AN u [’
! “ — > Preprocessing > ‘ . l
1 > >

Europeana E Combined Development Model evaluation
' dataset set
‘ - / :
E Final model
: creation
WikiNER ! Test set
Datasets 1
NER
model

Figure 4.1: Model creation pipeline

The train and development sets are used in the model selection step. Model selection (also called
hyperparameter selection, optimization or tuning) consists in finding the best performing model out of a
set of models obtained by different hyperparameter configurations. The train set is used to train different
models that are the result of different hyperparameter configurations. The model, i.e., hyperparame-
ter configuration, that yields the best results on the development set is selected. Model selection is
performed for each tool, thus we obtain the best model possible for each tool.

Each tool’s selected model is evaluated using the test set, in the model evaluation step. The goal of
model evaluation is to estimate the model's generalization performance i.e., how it performs on unseen
data, using the test set. According to the results, we choose the best performing model out of the two,
and create our NER model by training, again, on the complete dataset, in the final model creation step.

Afterwards, our NER model will be evaluated against the pre-trained models that we found and
against the current model in CONNECTIONLENS. The best performing model will be integrated in CON-

NECTIONLENS.

4.2 Datasets

In this Section, we describe the datasets, annotated with named-entities, that we used and combined

for creating the NER models.

54

4.2.1 WikiNER

WIkiINER [84] is a labeled multilingual dataset for NER, automatically created using the text and struc-
ture of Wikipedia'. Two datasets are available for each language, wp2 and wp3. The datasets are
labeled with Person, Organization, Location and Miscellaneous named-entities. The labels follow the
IOB encoding scheme, also referred to as IOB-1. A pipe-delimited format is used, in which there is
one sentence per line, with each token information separated by a whitespace. The token information
consists of the token itself, its POS tag and its NER label, that are separated by a pipe character, also

referred to as vertical bar. An example of a line of this dataset is:
France|NAM|I — LOC dans|PRP|O (..)

In what concerns the text, Punkt [85] was used to split paragraphs into sentences and a Penn
Treebank-style [86] tokenizer, modified to accommodate the different languages, for tokenization. Fur-
thermore, hyphenated terms were kept as single tokens. In what concerns personal titles, these were
removed from Person named-entities for English and German, however there is no mention in [84] in
what regards French. After manually accessing the dataset, we conclude they are part of the named-
entity.

The wp3 dataset contains more sentences than wp2, so we decided to use wp3. Regarding the
French language dataset, the wp3 version contains around 3.5 million tokens, where 134 thousand

sentences were selected from about 15 thousand articles.

4.2.2 KB Europeana Newspapers NER

The KB Europeana Newspapers NER dataset (which we will refer to in the document as simply Euro-
peana) was developed in the Europeana Newspapers project®. In summary, the goal of the project was
to improve access to digitized newspaper collections. The collection in question has more than 1000
digitized newspapers, published between 1618 and 1990, from 23 European libraries and 40 languages.

The digitized images of the newspapers were put through an OCR?® (Optical Character Recognition)
process, creating fully searchable text versions.

Training datasets and models for NER were produced for Dutch, French and German using a subset
of the original collection [87] with the goal of facilitating work on NER in the context of historic newspa-
pers. Specifically for French, whose newspapers were provided by the National Library of France, there

were 207,000 tokens, with 5672 Person, 5614 Location and 2574 Organization named-entities.

Thttps://www.wikipedia.org

2http://www.europeana-newspapers.eu

30OCR (also sometimes referred to as text recognition) is the process of recognizing text in images and converting it into
machine-readable text.

55

Moreover, as a result of the texts being the product of OCR, there is a tendency for errors to occur
during the recognition of the characters. Furthermore, not all named-entities in the text are annotated,
due to annotators’ errors.

Although it is announced that the labels of all datasets use a BIO encoding scheme, i.e., IOB-2, that
is not true for the French dataset. An IO encoding scheme is used, where problems arise when two
named-entities of the same type occur immediately after each other.

The NER datasets and models are available in KB Research Lab“ (original versions) and in GitHub®,
where work is still being done to improve the quality and harmony of the datasets: adding metadata
(e.g., source article), correcting OCR errors, removing erroneous sentences, removing hyphenation®,
adding or correcting NER labels, etc. In both versions there is no representation of sentences (usually
delimited by empty lines), although sentences exist in the dataset’s text. There is also no mention on
how tokenization was performed.

Focusing on the GitHub version, a version of the French dataset where the IO encoding scheme
was converted to BIO, i.e., IOB-2, as been made available. A CoNLL style format is used, where each
line represents a token and its information is in tab-separated columns: the first column corresponds to
the position of the token in the sentence, the second column to the token itself, the third column to the
NER label and the fourth column to an embedded NER label. This embedded NER label corresponds to
another named-entity that might occur simultaneously, e.g., University of Paris is an Organization with
an embedded Location. None of the different languages’ datasets contain embedded entities yet, but

the column is already included. An example of a line in this dataset is:

0 Paris B - LOC O

4.2.3 Quaero Old Press Extended Named Entity

The Quaero Old Press Extended Named Entity dataset [88], or corpus (which we will refer to in the
document as simply Quaero), is distributed by the European Language Resources Association (ELRA)’.
The dataset is composed of 76 newspaper issues, provided by the National Library of France in
digitized images and in OCR format, and, published between 1890 and 1891, by the French newspapers
"Le Temps", "La Croix" and "Le Figaro". We confirmed that these newspaper issues are not the same
as the ones in the Europeana dataset (described in Section 4.2.2).
From the images and the OCR output, 295 pages were extracted in text format and were manually

annotated with named-entities. The Quaero dataset is divided in a train dataset and a test dataset. The

“http://lab.kbresearch.nl/static/html/eunews.html

Shttps://github.com/EuropeanaNewspapers/ner-corpora

8Hyphenation is an automatic process where words are broken in two separate lines by means of an hyphen character that
would otherwise go further than the right margin of a page.

"http:/catalog.elra.info/en-us/repository/browse/ELRA-S0349

56

train dataset contains 231 pages with 1,297,742 words, 114,599 types and 136,113 components. The
test dataset contains 64 pages with 363,455 words, 33,083 types and 40,432 components. There is also
a sub-dataset that is supposed to work as a mini-reference dataset, for quality evaluation purposes.

For both the train and test files, there is a normalized version, which is recommended by the authors,
although, no information is provided as to what differs between the raw and the normalized version.

The dataset is composed by two kinds of elements: types (and sub-types), that refer to the category
of a named-entity, and components, that categorize the elements inside a named-entity.

There are 7 types of named-entities and 32 sub-types, that include classical named-entities: Person,
e.g., individual person (pers.ind), Location, e.g., physical location (loc.phys.geo), Organization, e.g.,
administration (org.adm) and additional named-entities: Time, Amount, Production and Functions.

Components can be (i) transverse, which means they can be used for any named-entity type, e.g.,
name of the entity, qualifying adjective, number, and (ii) specific, which means they are specific for a
certain type of named-entities, e.g., first/middle/last name (for the sub-type Individual Person), week/-
day/month/year (for the Date type).

Additionally, annotations have a non-flat structure and it is possible to define three kinds of compo-
sition that can take place: (i) a type contains a component, (i7) a type includes another type (used as
component), and (iiz) a named-entity type is used to refer to another named-entity type, for when the
type of the entity is different in the context it is inserted into.

In terms of the format of the dataset, it consists in having the text with XML tags marking the occur-

rence of the elements, i.e., types and components. Below is an excerpt of the dataset as an example:

00212633/PAG_1_TB000042.png

D’abord faisons tréve aux dissentiments

politiques. Quand la Foi est en péril, redirons-

nous avec <pers.ind> <name> Léon </name> <qualifier> Xlll </
qualifier> </pers.ind> , tous doivent s’unir d’un

commun accord pour la défendre.

Metadata is placed multiple times on a file, and it identifies a block of text that was selected for
annotation, e.g., 00212633/PAG_1_TB000042.png.

It is important to note that the dataset contains noisy and incorrectly recognized characters since it
is a result of an OCR operation. And, since the images belong to newspapers, which are written as
columns, this results in text with line breaks and hyphenation, as it is possible to see in the excerpt given

as an example. As a result of these characteristics, some features were added:

+ An attribute "correction”, used only on named-entities whose text is erroneous (and not on non-

entities), as a result of the OCR operation. The erroneous text is kept but its correct form is inserted

57

in a correction attribute placed in the type element, i.e., tag. For example (taken from [88]):

<pers.ind correction="Le Moine">
<name.last> LE Moibte. </name.last>
</pers.ind>

» A component "noisy-entities" used for OCR errors involving a named-entity boundary. It enables
annotating an entity that is in a span of noisy characters. For example (taken from [88]):
<loc.adm.reg correction="EN ALSACE-LORRAINE">

<noisy-entities> KN_ALSACE’LOBR4INE </noisy-entities>
</loc.adm.reg>

General principles were defined to assist the human annotators, for example, punctuation next to a
named-entity should be kept that way and annotated as part of the named-entity, e.g., </loc.adm.tfown>

Paris. </loc.adm.town>. These principles are described in detail in [88].

4.3 Pre-processing

The goal of the pre-processing step is to uniformize all datasets to have the same format, encoding
scheme and named-entity types.

Regarding the named-entity types, it is necessary to select a common set to all the datasets. After
inspecting the datasets, the common set of named-entity types corresponds to the traditional set: Per-
son, Location and Organization. Moreover, these are represented, respectively, by: "PER", "LOC" and
"ORG". Each have an associated prefix, resulting from the encoding scheme being used, e.g., "B-PER".

An IOB encoding scheme, more specifically, IOB-1, was chosen as it is widely used, and the improve-
ment obtained from using more expressive encoding schemes, e.g., IOBES, is usually not significant
(see [27,89]). Furthermore, with this encoding scheme we will benefit from using the popular "conlleval”
evaluation script made available by several CoNLL shared tasks (e.g., CoONLL-20028).

A CoNLL style format was chosen, where the dataset file contains 2 columns separated by a whites-
pace. Moreover, there is a token per line and empty lines identifying sentence boundaries. Each line

has the token itself separated by a whitespace from its NER label. For example:

Italie I — LOC

Besides, obviously, benefiting from the use of the "conlleval" evaluation script by using a CoNLL style
format, this format is also accepted, or easily convertible to be acceptable, by both tools used to train

the models, i.e., Flair and SpaCy.

8https://www.clips.uantwerpen.be/conli2002/ner/

58

The pre-processing step corresponding to each dataset is detailed in Sections 4.3.1, 4.3.2 and 4.3.3.
After the pre-processing, a data exploration step was performed for each pre-processed dataset, with
the goal of learning their characteristics, and is described in Section 4.3.4. Moreover, the joining of the
datasets to create a combined version is described in Section 4.3.5, and the following division in train,

development and test sets is explained in Section 4.3.6.

4.3.1 WikiNER

The WikiNER dataset already uses the target encoding scheme, i.e., IOB-1. However, in contrast, it has
a different format, i.e., pipe-delimited, so it was necessary to convert it to the target format. Additionally,
it has an extra named-entity type that was removed, i.e., Miscellaneous, to fit the chosen named-entity
types set { Person, Location, Organization }.

Moreover, the wp3 version of the dataset was chosen over the wp2 version, because it contains more

sentences, as explained in Section 4.2.1.

4.3.2 Europeana

The Europeana dataset uses a similar CoNLL style to the target, yet, it has extra columns with informa-
tion that is not necessary. Therefore, those were removed and only the token and its NER label were
kept.

Since it is impossible to automatically convert from an 10 to an IOB encoding scheme, it was neces-
sary to use the GitHub version of the dataset, that uses IOB-2, which we converted to I0OB-1, the target
encoding scheme. For this, it was necessary to replace all "B" prefixes with "I", except on the first token
of a named-entity that follows a named-entity of the same type.

Furthermore, the named-entity types of the dataset correspond to the target set.

4.3.3 Quaero

Since the goal is to combine all three datasets previously described, it did not make sense to keep the
train and test divisions in the Quaero dataset. Therefore, all train and test files were transformed to the
target specifications (that we defined at the beginning of the section) and concatenated, making up a
single file.

To transform the Quaero dataset to have the target format, encoding scheme and named-entity types,
it was necessary to: (i) remove and collect the named-entities tags from the text, (i7) perform tokenization
on the tag free text, and (iii) establish correspondences between each token and the named-entities

collected.

59

The named-entities present in this dataset have a wide range of types and are also sub-divided in
sub-types. It was necessary to create a mapping between the Quaero sub-types and the named-entity

target, i.e., the { Person, Location, Organization } set:
+ All location types were kept despite of the sub-type, i.e., "loc\..*", and mapped to "LOC"
+ All organization types were kept despite of the subtype, i.e., "org\..*", and mapped to "ORG"

» The sub-type individual person was kept, i.e., "pers.ind" and mapped to "PER". The sub-type
"pers.coll" was not kept because it translates to a group or collectivity of persons, e.g., catholiques,

which does not correspond to the meaning associated with Person.

To apply the transformation steps described before, it was mandatory to pre-process the text first

(strongly based on the use of regular expressions):
1. Remove metadata.
2. Remove empty lines.

3. Remove hyphenation. As a result of newspapers being written in columns, due to space, words

are often hyphenated.

4. Separate tokens attached to tags. This consists in finding characters immediately followed by an
angle bracket "<", or preceded by an angle bracket ">", and placing a space between them. For

example " (...) </pers.ind>UVAL " becomes " (...) </pers.ind> UVAL "

5. Apply corrections. This consists in finding all correction attributes and replacing everything inside
the corresponding tag by the correction text. For example " <title correction="Saint-Pére"> sai*nt-

Peére < /title> " becomes " <title> Saint-Pere </title> ".

Moreover, not all correction attributes were correctly placed by the annotators, meaning that their

automatic application will result in the removal of text that should not be removed. For example:

<org.adm correction="Commission™>

<kind> Commissioji </kind>
au
<name>budget</name>

</org.adm>
would become:

<org.adm>

Commission

60

</org.adm>

The correction attribute should have been placed in the component "kind", to correct the actual

erroneous word.

6. Remove angle brackets that are not part of tags. An example of an angle bracket that is not part

of atag is " P< *che extraordinaire ".

7. Remove erroneous hyphens. If an hyphen is not joining two word parts, e.g., "Saint-Pére", then

we considered it an error of the OCR process and remove it.
8. Remove extra whitespace characters and whitespace from the beginning of sentences.

After the pre-processing was performed, we split the text into tokens, based on whitespace. We
removed from the tokens the tags that were not of interest (and corresponding component and noisy-
entities tags), while keeping the text they enclosed. Afterwards, we transversed the list of tokens and
assigned each of them a non-entity "O" label, except when we found a tag, which we removed from the
tokens and assigned the tokens it enclosed the corresponding label based on the tag type. Furthermore,

only the most exterior tag was considered, e.g.,

<org.ent>

<kind>Il'école</kind>
de

<loc.adm.town> < name> Paris</name></loc.adm.town>

</org.ent>

All tokens inside the sub-type "org.ent" tag would be assigned the ORG named-entity, despite there
being another sub-type tag inside of this tag.

A first version of a CoNLL I0B-1 format was built, by creating a token column and a label column
obtained from the previous process. Since proper tokenization was not performed, this first version is
incorrect in terms of token definition, e.g., elisions like "'école" are considered as one token when it
should be "I and "école" or words are attached to a comma, e.g., "gouvernement,”. And, as a result, it
is also wrong in terms of encoding. For example:

Paris, I-LOC

Rome B-LOC

et B-LOC

The token "Rome" is assigned a label with "B" prefix, because it immediately follows a named-entity

of the same type, "Paris,". However, if properly tokenized, punctuation would not be part of the tokens

61

(except in special cases like abreviations) and "Rome" would be assigned the same label but with "I"

prefix, because it would come after the token "," which has the "O" label:

Paris I-LOC
, O
Rome I-LOC
et O

In order to correct this, we took the pre-processed text and removed all tags. Then, we tokenized
and segmented the text into sentences. Keeping in mind the goal of uniformizing the datasets, we want
to take a similar approach for sentence segmentation and tokenization to the other datasets (that are
already tokenized). We have no information in regards to the Europeana dataset, however we know that
the WikiNER dataset used Punkt for sentence segmentation and a Penn Treebank-style tokenizer. We
decided to use the Stanford tokenizer®, which is a Penn Treebank-style based tokenizer, for which there
is a derivative French version, with rules for elision and compounding. It is available in the Stanford
CoreNLP Java distribution, but also in Python, through wrappers, e.g., stanfordnlp.

Since, we are implementing in Python, it made sense to use a Python wrapper, therefore we decided
to use stanfordnlp. We made sure that hyphenated words were kept the same and that no token was
represented by more than one word or had whitespace. The tokenizer introduces some errors in the
dataset, however it is not something unexpected, as the other datasets also have tokenization and seg-
mentation errors. Furthermore, along with the tokenization, sentence segmentation was also performed
by stanfordnlp, and empty lines were added to create boundaries between sentences.

We transverse the "incorrect” token list, with the "erroneous” labels, and the "correct token" list,
and establish correspondences between the tokens, assigning a correct label to the correctly tokenized

tokens.

4.3.4 Data Exploration

In this section we explore each of the datasets’ characteristics.

We are interested in learning about attributes, like the number of sentences, tokens and named-
entities in each dataset. These attributes are represented in Table 4.1. Each row corresponds to a
dataset and each column to a different attribute.

We can observe that, WikiNER is the largest dataset and Europeana is the smallest. There is no
value assigned to the number of sentences in the Europeana dataset, because, as explained in Section
4.2.2, there is no definition of sentences in the dataset.

Looking at the named-entity distribution over each dataset, shown in Figures 4.2, 4.3 and 4.4, it is

possible to observe the percentage of named-entities belonging to each type.

Shttps://nlp.stanford.edu/software/tokenizer.shtml

62

#sentences #tokens #named-entities

WikiNER 132 257 3 499 695 216 341
Europeana - 205914 9894
Quaero 72 083 1851076 75 500

Table 4.1: Dataset’s attributes

Moreover, organizations are consistently the least represented in the datasets, with less than 25%
percent of the named-entities belonging to this named-entity type.

There is always a discrepancy between the representation of each named-entity type, except be-
tween locations and persons in the Europeana dataset, where the percentage of named-entities is
roughly the same. In the WIkiNER dataset, more than 50% of its named-entities are locations, be-
ing the most represented named-entity type on this dataset, as opposed to the Quaero dataset, where

the majority of the named-entities are persons.

100 - 100 - 100 -
75 - 75 - 75 -
£ 50- R 50 - R 50 -
25 - 25 - 25 -
o mm 0 o mm M [. I . T
ORG PER LOC ORG LOC PER ORG LOC PER
named-entity named-entity named-entity

Figure 4.2: WIkiNER’s named-entity Figure 4.3: Europeana’s named- Figure 4.4: Quaero’s named-entity
distribution entity distribution distribution

4.3.5 Joining the datasets

The goal was to combine the three pre-processed datasets into a single dataset. However, both the
Europeana and the WikiNER dataset showed some undesirable aspects.

The Europeana dataset has no representation of sentences, as explained in Section 4.2.2. It would
be necessary for us to perfom sentence segmentation, because, in the next step, the train, development
and test sets will be obtained by dividing the combined dataset in terms of sentences. One solution
would be to take all tokens, from the token column, in the CoNLL formated Europeana dataset, join
them and use a sentence segmenter to perform sentence segmentation over this text. The difficulty with
this solution lies in the fact that it is not possible to automatically know how to join the tokens: some
tokens should be joined next to each other, e.g., "I"" and "école", and others with whitespace between
them, e.g., "," and "Paris" or "les" and "autres". This solution seems feasible, however, it would be
necessary to be aware of all the different joining conditions. Additionally, the dataset is not "perfect" and

contains erroneous characters that are the result of the OCR operation. For example:

63

a o

Di I-LOC
I-LOC

nard I-LOC

, O

A period appeared in the middle of the named-entity "Dinard" during the OCR operation, and this
resulted in there being three tokens, "Di", "." and "nard" when there should only be one token "Dinard".
Moreover, if we were to join the tokens, and considering that typically, a period would join next to its
previous word and there would be a whitespace between the period and its following word, if applied
here, would create "Di. nard" and induce similarly or more in error.

Another solution would be to go through the token column in the dataset and finding sentence-ending
characters, i.e., period ".", question mark "?" or exclamation mark "!". However, the OCR errors would
also induce in error. Taking the previous example, the period would be considered the end of a sentence
when in reality is just a erroneous character.

Moreover, after the pre-processing for the dataset was performed, we noticed that there were a lot
of errors in what regards the use of B prefixes (probably a result of the conversion from 10 to IOB-2).

Below are some examples (that use IOB-1 since they are from after we pre-process the dataset):

Raoul I-PER la O Le O

Robin I-PER rue [|-LOC Conseil I-ORG
, O de B-LOC de B-ORG
Marie I-PER la B-LOC I’ B-ORG
Collin B-PER Tannerie B-LOC Ordre B-ORG

In all examples shown, the B prefixes should actually be | prefixes, because their corresponding
tokens are not a new named-entity but rather the continuation of a named-entity.

More occurrences of errors of the same pattern, as in the examples, occur throughout the dataset.
These errors, in contrast to other errors presented before, imply that the IOB-1 encoding scheme is
wrong and would induce the models trained with this dataset in error. Solving these errors would re-
quire French linguistic knowledge to verify and and apply manual corrections to the dataset. For these
reasons, we decided not to use the Europeana dataset.

In what regards the WIikiNER dataset, we also found wrong uses of the B prefix that do not match to

what we consider as a correct. Take these examples:

) O Ir o journaliste O
et O Irlande [|-LOC chez O

Eugéene I|-PER du B-LOC Rolling I-ORG
Hugo B-PER Nord I-LOC Stone B-ORG

In these examples, all B prefixes should also be | prefixes, for the same reasons presented for the

64

Europeana examples. For this reason, we decided not to use the WikiNER dataset.
In conclusion, instead of combining the three datasets as originally planned, we decided to only use

the Quaero dataset, due to the errors in the other datasets’ encoding scheme.

4.3.6 Train, development and test sets

The chosen dataset, needs to be divided in train, development and test sets, to be used by the tools that
will produce the NER models i.e., Flair and SpaCy.

To achieve this, we took all sentences in the dataset and randomly divided them in three sets. This
division is done percentually, and it is possible to choose what percentage each set should have of the
original sentences. Considered by some as a rule of thumb, we decided to divide the dataset in 60% for

the train set, 20% for the development set and 20% for the test set.

4.4 Evaluation methodology

When evaluating the extraction of a NER model or system, we care about how it predicts named-entities,
and not each token, since that is the goal of this task. Additionally, we consider an exact-match eval-
uation, this means, both the boundaries and the named-entity type predicted need to match the true
annotation in the dataset to be considered correct. This is the adopted evaluation procedure in multiple
CoNLL shared tasks. Moreover, we use the "conlleval" evaluation script to measure the performance of
each model.

It is important to also understand the following numbers, computed for each named-entity type:
» True positive (tp): number of correctly predicted named-entities

+ False positive (fp): number of incorrectly predicted hamed-entities

+ False negative (fn): number of named-entities not predicted

The metrics used to evaluate each model’s performance are computed for each named-entity type

and they are (following the definition given by CoNLL):

* Precision: which shows the proportion of correctly predicted named-entities of a given type out of

all named-entities predicted as that type: precision;ype = tpi%

» Recall: which shows, for a named-entity type, the proportion of named-entities that are of that

type, that were predicted as that type recall;yp. = #

» F'l-score: which is the harmonic mean of precision and recall, so it gives an idea of how the model

Precisionype*recalliype
Precisioniypet+recalliype

performs in terms of the both measures F'1 — scoreyp. = 2 *

65

Moreover, we aim to maximize the F'1-score.

Since this is a multi-class problem, precision, recall and F'1-score are computed for each named-
entity type, as well as their micro-average. While, for a given metric, the macro-average computes it for
each named-entity type and then takes the average, the micro-average joins the contributions of every
named-entity type to compute the average metric. This means, macro-average treats all named-entity
types equally and micro-average treats all named-entity instances equally. CoNLL uses micro-averaging

to obtain the overall metrics.

4.5 Model selection

In this Section, we describe the model selection step, explaining how the best model possible was

obtained, for each tool, i.e., Flair and SpaCy.

4.5.1 Flair

The Flair framework allows training sequence labelling models using a bi-LSTM-CRF architecture and
facilitates the integration with different word embeddings. Additionally, it allows combining or stacking
different word embeddings by concatenating their vectors.

It is stated that a hyperparameter selection routine is implemented, which allows defining a search
space of hyperparameters, e.g., different numbers of RNN layers, mini-batch sizes, word embeddings,
etc. However, after experimenting with this part of the framework, we came to the conclusion it does not
work due to flaws on the Flair implementation. After discussing with a Flair developer, the recommended
solution was to compare different word embeddings by training different models (a model for each word
embedding) and selecting the best performing model out of all.

We looked into all word embeddings that can work for French and trained a model using the train and

development set using each word embedding or a combination of them:
» FastText embeddings (classical static word-level embeddings): standard
« Stacked forward and backward Flair embeddings (contextual string embeddings): stacked-flair
» Stacked FastText and forward and backward Flair embeddings: stacked-standard-flair
+ Stacked FastText and character embeddings: stacked-standard-char

+ Byte Pair embeddings (word embeddings precomputed on the subword-level): bytepair-fr (French)

and bytepair-multi (multilingual)

+ CamemBERT embeddings (a Tasty French Language Model): camembert

66

» XLM-RoBERTa embeddings (multilingual language model): xIm-roberta-base

We consider the model trained with FastText embeddings, "standard" embeddings, as the baseline
to which we will compare the results of the other models.

The maximum number of epochs correspond to the number of times the learning algorithm is ex-
posed to the full train set, and each epoch results in a model. In the end, the best model corresponds to
the model that gives the best F'1-score on the development set.

During training, at the end of each epoch, the current model is evaluated using the development
set. If the resulting F'1-score does not improve for a certain number of epochs (called patience, and
that by default is 3), the learning rate is decreased by a certain amount (called anneal factor, and that
by default is 0.5). The training stops when it reaches the maximum number of epochs (that by default
corresponds to 100 epochs) or when the learning rate falls bellow a certain threshold (called learning
annealing, and that by default is 0.0001). This is called learning rate annealing, and in this case it is
done against the development set’s F'1-score. As explained previously is Section 3.1.2.2, after data is
fed into the network, the errors are back-propagated and the network’s weights are adjusted. The weight
adjustment amount is called learning rate. It is a hyperparameter that reflects the rate to which the model
learns. Having a good learning rate means that it needs to be low enough so that optimal weights are
achieved, but high enough so that it learns fast. Instead of having a fixed learning rate value, Flair uses
learning rate annealing to have an adaptative learning rate, where it is adjusted according to the models
performance on the development set.

We limited the number of maximum epochs to 30 during the training of the different word embedding
models. After the best performing word embedding model is selected and evaluated on the test set,
detailed in Section 4.6, it will be retrained on the complete dataset and with an increased number of
maximum epochs, explained in Section 4.7.

In Table 4.2 the evaluation results of each model on the development set are presented. What we
consider to be the standard model has a better precision overall and also for each named-entity type
when compared to the recall, this means that the model makes sure that the named-entities it finds are
correct at the cost of not detecting every named-entity.

For all models, organizations always have lower scores when compared to persons and locations,
which might be a result of the dataset having a lower representation of organizations. Moreover, the
former always has a higher precision than recall.

We can observe that the models trained using CamemBERT (camembert table) and stacked FastText
and Flair embeddings (stacked-standard-flair table) are the two best performing models. Although the
CamemBERT model is slightly better overall than the other model, it is much slower making predictions
and it required changing the source code of the Flair library in order to make it work. For this reason, we

selected the stacked FastText and Flair embeddings model.

67

standard Precision | Recall | Fs—;
LOC 79.30% | 76.35% | 77.80
ORG 71.40% | 57.96% | 63.98
PER 78.21% | 76.35% | 77.27
Overall 77.38% | 72.57% | 74.90
stacked-flair Precision | Recall Fa=1
LOC 79.30% | 85.06% | 82.08
ORG 72.71% | 62.95% | 67.48
PER 84.34% | 85.61% | 84.97
Overall 80.47% | 80.77% | 80.62
stacked-standard-flair | Precision | Recall | Fz_;
LOC 82.99% | 86.22% | 84.57
ORG 74.47% | 62.73% | 68.10
PER 85.37% | 87.71% | 86.52
Overall 82.63% | 82.08% | 82.35
stacked-standard-char | Precision | Recall Fp=1
LOC 80.01% | 84.08% | 82.00
ORG 71.55% | 63.39% | 67.22
PER 81.76% | 83.97% | 82.85
Overall 79.30% | 79.78% | 79.54
bytepair-fr Precision | Recall | Fsg—;
LOC 79.29% | 77.84% | 78.56
ORG 69.21% | 58.09% | 63.16
PER 81.13% | 80.48% | 80.80
Overall 78.35% | 74.99% | 76.63
bytepair-multi Precision | Recall | Fsg—;
LOC 80.12% | 76.28% | 78.15
ORG 68.51% | 62.26% | 65.23
PER 79.85% | 82.14% | 80.98
Overall 77.77% | 76.08% | 76.92
camembert Precision | Recall Fa_1
LOC 85.26% | 85.26% | 85.26
ORG 71.72% | 68.83% | 70.25
PER 85.72% | 87.04% | 86.37
Overall 82.80% | 82.70% | 82.75
xlm-roberta-base Precision | Recall Fa=1
LOC 80.31% | 76.49% | 78.35
ORG 69.57% | 51.71% | 59.32
PER 78.27% | 86.23% | 82.06
Overall 77.58% | 75.86% | 76.71

Table 4.2: Flair's model selection results

68

4.5.2 SpaCy

To train a model using SpaCy it is possible by means of Python code or the command-line interface
(CLI). After discussing with a SpaCy developer, it was recommended to train using the CLI, as it is
done for all of SpaCy’s distributed models. They also referred that SpaCy does not have any built-in
tools for hyperparameter selection and it is also, currently, not as easy as it should be to modify the
model hyperparameters. Furthermore, all of SpaCy’s distributed models were trained with the default
hyperparameters. For this reason, we decided to train using the CLI and to not perform hyperparameter
selection. Instead we will experiment with pre-training SpaCy’s "token to vector" layer by providing it
with raw French data. The resulting pre-trained weights will be provided to train a model instead of
the convolutional neural network layers (refer to Section 3.1.3) being intialized with random weights.
Additionally, we will update SpaCy’s pre-trained French NER model with our train set. Besides that,
a standard model will also be trained, i.e., a default model with no add-ons, that we consider as the

baseline to which we will compare the results of the other SpaCy models.

As with Flair, we limited the number of maximum epochs to 30 and a model is saved after each epoch.
Moreover, at each epoch the model being trained is evaluated using the development set, and the best
model is the one that gives the best F'1-score on the development set. Unlike Flair, by default there is
no early stopping, i.e., the training does not end after a certain amount of epochs without improvment in
the F'1-score. Furthermore, SpaCy shuffles the train set at each epoch, so the order of examples shown
to the model do not influence its learning.

SpaCy requires train data in JSON format, and there is a built-in CLI command that allows the
conversion of different dataset formats to the JSON format, including CoNLL style formats, which is the
format of our dataset. The conversion of both the train and development sets to the JSON format were
the first steps. During this conversion, the encoding scheme is also converted to BILUO. So it was
necessary to convert it back to BIO when evaluating the model.

The pre-trained weights were obtained by running a SpaCy CLI command, that as explained before,
pre-trains the "token to vector" layer. More specifically, it trains the convolutional neural network to predict
word vectors and then obtains the networks "pre-trained" weights. These pre-trained weights are loaded
back during initialization of the convolutional neural network when training the NER model. To train this
layer it is necessary to provide it with raw text for it to learn to predict a word’s vector, taking into account
its surrounding words. This raw text needs to be in a JSONL (newline-delimited JSON) format to be
accepted by SpaCy, which consists in, and specifically in our case, in having sentences represented by

a JSON object, per line, whose value is a list of the tokens that form the sentence, for example:

"o "on

{"tokens": ["Mais", "ce", "sont", "ses", "propres",

"on HIN)

vétements", "qui", "ont", "pris", "feu", "."]}

oo "on T

{"tokens": ["Le", "retour”, "de", "flamme", "ne", "s’", "est", "pas"”, "fait", "attendre", "."]}

69

The raw text was obtained from a dataset of crawled French news articles, from the top 10,000
news sites, made available by Webhose.io'?. This dataset is composed of 245,308 JSON files. It was
necessary to pre-process these files in order to convert the raw text contained in them to the JSONL
format, which includes steps of segmentation and tokenization of the text (using the approach taken for
the Quaero dataset in Section 4.3.3). This resulted in a total of 3,457,619 sentences and 85,359,724
tokens, which we reduced to a total of 70,000 sentences and 1,731,215 tokens. We perfomed the "pre-
training" for the default number of 1,000 epochs, and took the weights of the last resulting model, i.e.,
the model that corresponds to the 1,000th epoch, and used them to train a NER model.

We chose to experiment with SpaCy’s capability of online learning on their models to update one of
their existing models, by training it with our train set, and seeing if there is a perfomance improvement.
We decided to do this solely on SpaCy’s medium model, instead of also doing it on the small model,
because a bigger model is expected to perfom better and small models do not include word vectors,
which also impacts the performance. SpaCy’s pre-trained models are better described in Chapter 6.
The pre-trained models were trained on the WikiNER dataset, and thus are able to extract Person, Lo-
cation, Organization and Miscellaneous named-entities. Our dataset does not include the Miscellaneous
named-entity type, so it is ignored during the evaluation.

In Table 4.3, the evaluation results of each of the three models on the development set are presented.

standard Precision | Recall | Fg_;
LOC 79.20% | 83.29% | 81.19
ORG 67.43% | 69.33% | 68.37
PER 82.59% | 84.56% | 83.56
Overall 78.33% | 81.01% | 79.65
with-pre-trained-weights | Precision | Recall | Fg—;
LOC 79.86% | 83.75% | 81.76
ORG 66.24% | 69.65% | 67.90
PER 82.44% | 85.98% | 84.17
Overall 78.23% | 81.88% | 80.01
updated Precision | Recall Fp=1
LOC 80.96% | 83.50% | 82.21
ORG 68.21% | 67.62% | 67.91
PER 83.55% | 85.77% | 84.65
Overall 79.61% | 81.28% | 80.44

Table 4.3: SpaCy’s model selection results

For all models, we can observe that they have a higher recall than precision, not only in terms of the
overall score but also for each named-entity type, except for the updated model where the precision is

slightly higher for organizations. A higher recall translates in the models trying to predict all the named-

10https://webhose.io/

70

entities at the cost of wrongly predicting named-entities. Moreover, organizations have lower scores
than the other named-entity types, which might be a result of its lower representation in the dataset,

and, persons have the highest scores.

Using pre-trained weights decreased almost insignificantly the overall precision and improved very
slightly the overall recall and F'1-score, when compared to the standard model. The updated model
shows an increase in all metrics in comparison to the standard model. Moreover, it has the highest

overall scores for all metrics except for the recall, when compared to the model with pre-trained weights.

In theory, we should select the updated model since it has the higher F'1-score. However, select-
ing the updated model means we always have to ignore Miscellaneous named-entity predictions when
evaluating. Still, the updated model is bigger, which generally means better results. On the other hand,
selecting the model trained with pre-trained weights, means we do not have to do any post-processing
and the F'1-score difference between the models is not very high. Both have advantages and disadvan-

tages, however we decided to select the updated model.

4.6 Model evaluation

The selected best performing models of each tool are evaluated on the test set, to get an estimate of

their performance on unseen data. These results are presented in Table 4.4.

flair-stacked-standard-flair | Precision | Recall Fp=1
LOC 82.80% | 85.77% | 84.26
ORG 74.44% | 62.32% | 67.84
PER 86.12% | 88.19% | 87.14
Overall 82.88% | 82.01% | 82.44
spacy-updated Precision | Recall | Fg—;
LOC 81.06% | 83.76% | 82.39
ORG 68.81% | 66.61% | 67.69
PER 83.66% | 86.61% | 85.11
Overall 79.84% | 81.50% | 80.66

Table 4.4: Model evaluation results

Although the SpaCy model has a better score for the organizations recall, the Flair model is superior
in all other metrics, overall and for all named-entity types. For this reason, the Flair model is chosen to

advance to the next step in the pipeline.

71

4.7 Final model creation

According to the previous step, the best model we achieved uses the Flair and stacked FastText and Flair
embeddings. The final step of the model creation pipeline is to train the chosen model on the complete
dataset. However, it is necessary to keep a portion of the dataset to be used as the development set
during the final training of the model. For this reason, we randomly divided the dataset again, but in
two sets: train and development set, keeping 80% of the sentences for the train set and 20% of the
sentences for the development set. We also increased the number of maximum epochs to 150 while
training. The model created will be refered to as flair-ssf-quaero for the rest of this document.

In Chapter 6, this version of the model will be evaluated on another dataset, and its results will be
compared to pre-trained models and the current CONNECTIONLENS model. This way we ensure that the
evaluations are not biased, since if all models were evaluated on this test set, our trained model might
perform better, since it was trained with a similar train set i.e., a portion of the same dataset. This way

we achieve a more independent and non biased evaluation.

72

Distantly Supervised French RE

Contents
5.1 DBpediaand Wikipedia e e e e e 75
5.2 Proceduret e e e e e e e e e e 76
5.3 Relationships e e e e s 77
5.4 Obtaining candidate sentences i it ittt 78
5.5 Selectingsentences. i i il e e e e e e e 80
5.6 Training o o i i it e et e e e e e e e e e e e e e e e 81

73

74

The goal of this Chapter is to describe the approach that we took for developing a Relationship
Extraction (RE) solution to integrate CONNECTIONLENS. Just like with NER, the approach can either
consist in using a software tool or implementing a technique from scratch.

There are no datasets annotated with entities and relationships for French. Therefore, we are limited
to using software tools that can perform French RE off-the-shelf or that facilitate the implementation
of RE, by using techniques that do not require manually labeled data, such as the ones presented in
Section 3.2.3. There are three types of software tools: black-box, Open IE systems and third-party
libraries.

We only found two tools that can perform RE for French off-the-shelf : IBM Watson NLU and the
French version of ReVerb, that we presented in Section 3.2.3. IBM Watson NLU is a black-box web
service and thus entails the typical limitations and constraints, for instance, a fixed number of accesses
per time period. Those constraints are not desired for CONNECTIONLENS. Moreover, the French version
of ReVerb is an Open |IE system, which means we have no control over which relationships are extracted,
which is equally not desired for extracting relationships in CONNECTIONLENS.

Regarding third-party libraries, we only found one that implements a technique that does not require
manually labeled data, which is OpenNRE. It integrates training of bag-level RE models, which is a widely
applied method for distantly supervised RE, that we explained in detail in Section 3.2.2.2. With a bag-
level model we do not predict the relationship present in each input sentence, but rather the relationship
between two entities based on all sentences where they co-occur. To train this model we need to use
distant supervision to automatically build a dataset using a combination of relationship instances, from a
knowledge base (KB), and sentences expressing the relationships, from a text corpus, as we explained
in Section 3.2.2.2. We decided to use French DBpedia and Wikipedia articles, respectively.

This chapter is organized as follows. We first describe the use of DBpedia and Wikipedia in Section
5.1. Then, we outline the steps to build the distantly supervised RE model in Section 5.2, which are
further detailed in Sections 5.3, 5.4, 5.5, and 5.6.

5.1 DBpedia and Wikipedia

Wikipedia is an online free multilingual encyclopedia collaboratively constructed by a community of vol-
unteer editors. Wikipedia articles are not only composed of "free" text but also structured elements,
namely, infoboxes, that provide factual information about an entity, that the article is about, in the form of
a list of attributes and respective values.

DBpedia [48] is a free multilingual KB built from Wikipedia’s structured information. The information
extracted from Wikipedia is stored in the form of (subject, predicate, object) triples using the Resource

Description Framework (RDF). Over the years, the quality of the data has been improved by mapping-

75

based infobox extraction, where mappings have been developed to relate the infoboxes to the DBpedia
ontology (structure that describes classes, e.g., person, and properties, e.g., birth place). This solves
the problem of editors using different attribute names to express the same concept in infoboxes and
consequently the concept being represented by different terms in the ontology, by mapping synonym
infobox attributes to a single property or class in the ontology.

The fact that DBpedia and Wikipedia are available in French and the fact that mappings that related
Wikipedia to DBpedia exist, motivate our choice of using both to build a distantly supervised French RE
dataset, together with the particularity that Wikipedia sentences typically state facts (unlike other text
domains). Additionally, there is an increased probability that the DBpedia relationships will appear in the
sentences in Wikipedia articles since DBpedia is built from Wikpedia.

The DBpedia data set can be accessed online via the DBpedia SPARQL (query language for RDF
data) query endpoint’. Alternatively, a dataset dump can be downloaded and stored using, for example,
a local triplestore, also referred to as RDF store, which is a type of database specifically built for stor-
ing and querying triples. Since, the DBpedia SPARQL endpoint has query restrictions, we decided to
download the last officially released DBpedia version, which is based on a Wikipedia dump from October

20162, for French, and query it locally using the OpenLink Virtuoso triplestore®.

5.2 Procedure

Following the distant supervision expressed-at-least-once assumption: if a pair of named-entities is
related in the KB, at least one sentence containing both entities might express the relationship, detailed
in Section 3.2.2.2. Therefore, given a triple, (enty, ents, rel), in the KB, it is expected that at least one
sentence across both entities, ent; and ent,, Wikipedia articles expresses the relationship rel. The
procedure we took to build the distantly supervised RE model, based on the works of [90-92], consists

in:

1. Get all relationships between named-entities of the type Person, Location and Organization from
DBPedia, and filter and group the relationships. In addition, generate negative relationship triples,

which are triples where the two entities involved are not related. This is detailed in Section 5.3.

2. For each entity involved in a relationship, process the text in its Wikipedia article and keep as
candidate sentences the ones that contain at least two named-entities. Additionally, obtain and
create a set of surface forms (alternative names an entity can be mentioned as, in the text) for the

named-entity. This is further described in Section 5.4.

Thttp:/dbpedia.org/sparaq|
2https://wiki.dbpedia.org/develop/datasets/dopedia-version-2016-10
Shttp://vos.openlinksw.com/

76

3. For every relationship triple, access the candidate sentences of each named-entity involved, ent;
and ento. Afterwards, using the named-entities’ surface forms, select the sentences that match

both named-entities, ent; and ent,. This step is further described in Section 5.5.

4. Use the selected sentences to train a RE model using OpenNRE, as described in Section 5.6.

5.3 Relationships

We are only interested in extracting relationships between entities, namely of the Person, Location and
Organization types, which are the named-entity types the NER solution in CONNECTIONLENS is capable
of extracting. Therefore, we query DBpedia to obtain all relationships that exist between named-entities
of those types, and obtain around 1.25M relationship triple instances in total.

Since there is a significant number of relationships types and, furthermore, a significant number of
relationship types that are similar, i.e., which coarsely have the same meaning, and where sentences
expressing them are expected to be similar, we decided to select a smaller set of relationships types.
This set is the result of selecting the most frequent relationships types and grouping the ones with a
similar meaning. For example, region, country and other relationship types were grouped in a single
relationship type denoted locatedin, because coarsely all of them want to express where something is
located, and all the sentences that were to be selected had a similar structure.

For example, the following two triples and corresponding sentences were grouped together in the

same locatedIn relationship type:
(Wyoming, Etats-Unis, country): Le Wyoming (...) estun Etat de I'Ouest des Etats-Unis.
(Nicaragua, Amérique centrale, region) : Le Nicaragua, (...) estun pays d’Amérique centrale.

In total, we end up with 29 relationship types: locatedin, birthPlace, deathPlace, party, familyMember,
parentOrganisation, bandMember, sportsTeam, studiedAt, childOrganisation, nearTo, owner, spouse,
influencedBy, leader, affiliatedWith, mentorOf, residesIn, employedBy, foundedBy, mentoredBy, record-
Label, influenced, coach, architect, operator, keyPerson, created and knownFor.

Moreover, we reduced the number of relationship triples for time and efficiency reasons. We have to
process the article’s text of every entity that participates in a relationship, in step 2 of the procedure (that
was explained in Section 5.2). Therefore, it makes more sense to remove entities, because we reduce
the amount of articles we have to process, and, consequently, relationship triples are also removed,
because the relationships where they participate will not be considered. We removed a percentage of
each type of named-entity from the set of entities, except organizations, i.e., removed 70% of locations
and 50% of persons. Organizations are the least common type of entity in the dataset, with a difference

of more than 100K from persons and locations, so we decided to keep all organizations. Consequently,

77

we have around 43K persons, 36K locations and 17K organizations, making a total of around 96K
entities. In total, we end up with about 116K relationship triples.

The dataset being built also needs to contain negative examples, i.e., sentences that express the
nonexistence of a relationship between two entities. To achieve this, we combine entities in a relationship
triple (ent1, ent2, NA), where N A denotes a negative relationship, that are not related in DBpedia, i.e.,
do not have a triple containing both entities in the KB. Then, in the next step (detailed in Section 5.4)
sentences containing both entities will be collected as examples of N A relationship, based on the triples
generated. We had to overestimate the number of negative triples to generate, because if two entities
are not related, there is a low chance they will appear together in a sentence. Ultimately, we add around
92M negative relationship triples to the previous 116K relationship triples. And, the N A relationship type
is added to the previous 29 relationship types, making a a total of 30 relationship types.

Moreover, we randomly split the relationship instances in the dataset, in train, development and test
sets, using the rule of thumb of 60% for the train set, 20% for the development set and 20% for the
test set. It is important that the dataset is divided in terms of relationship instances, and not sentences,
because sentences for the same entity pair should be together in the same set and not spread across

the different sets.

5.4 Obtaining candidate sentences

We define as candidate sentences, for a given entity, all sentences in the entity’s Wikipedia article text
that contain at least two named-entities. The set of steps required to collect all candidate sentences for
all entities in the dataset are described below.

For each entity in the processed dataset, we access the entity’s French Wikipedia article. To access
the Wikipedia articles we use the DBPedia NIF Dataset [93], included in the DBPedia 2016 version,
which makes available, among other things, the actual text of the articles without structures like tables,
etc.

Each article’s text is segmented in sentences and tokenized using the Stanford tokenizer in the
French version, which we previously used for the same task in Chapter 4. Then, NER is performed
over the sentences, using the best French NER model we selected in Section 6.1.4, to annotate Person,
Organization and Location named-entities in the text. We keep as candidate sentences the ones that
possess two or more named-entities, as well as the respective detected entities.

We considered that the "name" of an entity in DBPedia corresponds to its Wikipedia’s article title.
There are different ways an entity can be referred to in the text, i.e., surface forms, besides its "name",
so simply using exact matching to "names" to discover to what DBpedia entities, the entities detected

in the text correspond to, is not sufficient. For example, a Person named-entity may be referred to, not

78

only by what commonly is the title of its article, i.e., first and last name, but also by just its first name,
or just its last name, full name, as well as others such as nicknames, e.g., Barack Obama whose article
title is Barack Obama may be referred to in the text, besides the article title, by Barack, Obama, Barack
Hussein Obama, etc. The same applies for other types of named-entities, for example Organizations
which may be mentioned in the text by the organization’s full name, its acronym, among others.

For this reason, we decided to explore how to obtain a set of surface forms for each entity. The
Lexicalizations* dataset provides surfaces forms for each DBPedia resource. The dataset is built from

three different DBpedia properties an entity can have:

» Label - which contains the entity’s article titles, e.g., the label property for Harvard University in

DBpedia has: Harvard University (en), Universidad de Harvard (es), Universidade Harvard (pt)

» Disambiguation - which includes the ambiguous surface forms that can be associated with the
entity in question, e.g., the disambiguation property for Barack Obama contains (where dbr means

Dbpedia resource): dbr:Obama_(disambiguation), dbr:Barack_(disambiguation), dor:Bama

* Redirects - which are URIs that are alternative to the entity’s article and include the entity’s sur-
face forms, misspellings and acronym, e.g., the redirects property for Barack Obama contains:
dbr:Obama, dbr:Barack Hussein_Obama, dbr:Barack H. Obama, dbr:Borrack_Obama, etc

However, the Lexicalizations dataset is only available in English, and although it could work for person
names, in what concerns locations and organizations, the corresponding names can be different in
English and in French. Therefore, to create, for each entity, a set of surface forms, we decided to use a

combination of:

» the article title (in French) with and without the text between brackets removed (used for disam-

biguation), e.g., Ontario (Californie) and Ontario.
« the entity’s redirect property values.

« if the entity belongs to the Person type, we add the first and last name separately to the set of

surface forms.

For example, the article title and (the only) redirect of Michelle Obama are: Michelle Obama and
Michelle Robinson (her maiden name); if the text refers to Michelle Obama as just Michelle it will
not be considered a match to Michelle Obama because Michelle is not in the set of surface forms.
Moreover, last name is also necessary, for example, Cristiano Ronaldo, does not have Ronaldo in

its redirects however, in the text, Cristiano Ronaldo is refered to as just Ronaldo.

“https://wiki.dbpedia.org/lexicalizations

79

- if the entity is of the Organization type we build an acronym by joining the first letter of each word
in its name, i.e., article title. This is performed because there is a possibility the redirects may not

include one.

All the strings in the resulting surface forms set are then pre-processed to be lowercase, without
punctuation, accents and without stop words. Moreover, when trying to match detected entities to the

surface forms, the same pre-processing is done to the detected entities string.

5.5 Selecting sentences

For each relationship triple (ent;, ents, rel), in each set, i.e., train, development and test set, we access
the candidate sentences of the named-entities involved, ent; and ent,. For each candidate sentence,
we take the detected entities and pre-process the corresponding string like we did for surface forms in
Section 5.4, i.e., lowercase, without punctuation, accents and without stop words.

Moreover, for each detected entity, we apply an exact matching procedure between its pre-processed
string and all the surfaces forms of each involved entity, ent; and ents. If there is at least one surface
form of ent; or ent, that matches the detected entity, and both the detected entity and the involved entity
are of the same type, i.e., Person, Organization or Location, we consider it a match.

Finally, if the candidate sentence has at least one detected entity that matches ent; and at least one
detected entity that matches ent., we select the sentence as an example of the relationship rel between

ent; and ents.

entities # instances # sentences
train 38064 41536 59625
dev 11451 10269 14707
test 14177 13063 19322
total 63692 64868 93654

Table 5.1: RE dataset attributes

The number of sentences we collected for each set is summarized in Table 5.1. We collected 59,625
sentences for the train set, 14,707 sentences for the development set and 19,322 sentences for the
test set, for a total of 93,654 sentences. Moreover, the number of relationship instances, and entities,
at the end of the procedure is not the same as at the end of the first step (described in Section 5.3),
because some relationship instances may not have any sentence where both entities co-occur, thus the
relationship instance is not considered. This happens more commonly with negative instances, due to
the low probability of the entities co-occurring in a sentence if they are not related.

In Appendix A, we present a complete and detailed statistic regarding the dataset that resulted from

80

the procedure described. Namely, it is possible to observe the number of entities that exist per type,
the relationship types that were picked and how many relationship instances and sentences exist per

relationship type.

5.6 Training

We use the OpenNRE package to train a bag-level PCNN-ATT model, the same architecture as the
model proposed in [56], described in Section 3.2.

OpenNRE requires the dataset to be divided in three sets to train a model i.e, train, development
and test sets. The division of the dataset was described in Section 5.3. Each of these sets has a
corresponding file containing its example sentences, which are the sentences we selected in Section
5.5. The file needs to have the following structure: one example sentence per line, represented by a

dictionary. Furthermore, the dictionary contains the following key-value pairs:

« text - whose value is the sentence itself. The sentence is previously tokenized, as described in
Section 5.4.

relation - the relationship type expressed in the sentence

» h-the head entity, i.e., ent;, whose value is a dictionary with the keys: id, name, and pos. The id
is a unique identifier for the entity, for which we used the DBPedia resource URI of the entity. The
name corresponds to how the entity is mentioned in the text. Moreover, the pos is the position of

the entity in the sentence, character-wise

t - the tail entity, i.e., ents, whose value is a dictionary with the same structure as the one of the

head entity h

The following example illustrates a representation of an example sentence for the relationship triple
(Barack Obama, Honolulu, birthPlace):

{

"text": "Barack Hussein Obama II , né le 4 aolt 1961 & Honolulu .",
"relation": "birthPlace",
"h': { "name": "Barack Hussein Obama II",
"id": "Barack_Obama'",
"pos": [0, 23] 1},
R ol { "name": "Honolulu",
id": "Honolulu",
"pos": [46, 541 }

81

Furthermore, if a selected sentence has more than one occurrence for ent; or ents, only the first

occurence is considered.

82

Experimental Evaluation

Contents
6.1 Named-Entity Recognition i i e 85
6.2 RelationshipExtraction. i e e 90
6.3 Integration in ConnectionLensttt 94

83

84

This chapter presents the experimental evaluation performed for both NER and RE models as well
as the integration of the best performing model of each task in CONNECTIONLENS. The experimental
evaluation carried out for NER is detailed in Section 6.1 and for RE it is detailed in Section 6.2. Section
6.3 presents how the best performing NER and RE model were integrated in CONNECTIONLENS.

6.1 Named-Entity Recognition

This Section presents the experimental evaluation for NER. More concretely, in Section 6.1.1 the different
models that are evaluated are introduced. Section 6.1.2 describes the dataset used to evaluate the
models, and the pre-processing that it underwent. In Section 6.1.3, the evaluation methodology and

metrics are presented. Section 6.1.4 reports the results achieved with each model and compares them.

6.1.1 Evaluated models

We are evaluating and comparing the performance of different NER models:

* flair-ssf-quaero - the model selected and trained in Chapter 4 on the Quaero dataset using Flair

and stacked forward and backward French Flair embeddings with French fastText embeddings

* flair-pre-trained - the French pre-trained Flair model. It is trained on the WikiNER dataset, and

uses French character embeddings, trained on Wikipedia, and French fastText embeddings

* spacy-pre-trained-md - the medium pre-trained French SpaCy model. It is trained on the WikiNER

dataset using SpaCy’s architecure described in Section 3.1.3

* spacy-pre-trained-sm - the small pre-trained French SpaCy model. Trained on the same dataset

and architecure, however, unlike the medium model, it does not include word vectors

« stanford-quaero - the model previously present in CONNECTIONLENS [2], trained by us using Stan-
ford NER [34,35], on the Quaero dataset

6.1.2 Evaluation dataset

For evaluating the different models we chose the FTBNER dataset. This dataset corresponds to a ver-
sion [94] of the French TreeBank (FTB) corpus [95], annotated with named-entities [96]. It was used to
evaluate the CamemBERT language model [97] on the NER task. TreeBanks consist in corpora contain-
ing manually checked linguistic annotations, such as syntactic structure, which is commonly represented
as a tree, hence the name Treebank. Additionally, they can be enhanced with other linguistic informa-
tion. The FTB corpus, in particular, is composed of sentences extracted from the French newspaper Le

Monde of different domains, e.g., politics and economy, that span between 1989 and 1993.

85

The FTBNER dataset is a result of manual annotation of named-entities and their respective type on
the FTB corpus. Since it was manually annotated it contains errors that typically derive from manual an-
notation, e.g., missing annotations, as also occurs with the datasets described in Chapter 4. Moreover, it
contains 12,351 sentences out of which 5890 contain at least one named-entity annotated. The dataset
is labelled with 7 different named-entity types: 2025 Person, 3761 Location, 2381 Organization, 3357
Company, 15 POI (Point of Interest), 67 Product and 29 Fictional Character. Following the annotation
guidelines [96], Fictional Character is used for fictional people or animals, e.g., Zorro. POl is used for
entities like stadiums, neighborhoods, ports, etc. Organization is used for all references to organizations
except company names, where Company is used. In what concerns Person, used for individual persons,
personal titles are not part of the named-entity as well as adjectives, determinants or professions.

The dataset is divided in three sets: train, developed and test. We noticed that the test set does not
include example sentences for all named-entity types, e.g., POI. In what concerns the format it uses a
CoNLL style format, containing four tab-separated columns, where each line represents a token and an
empty lines define sentence boundaries. The first column corresponds to the token itself, the second
column contains, for all tokens, an underscore, the third column corresponds to the POS tag and the last
column to the NER label. Furthermore, the labels follow the BIO encoding scheme, i.e., IOB-2.

By evaluating all models with the FTBNER dataset we hope to achieve a more accurate evaluation,
challenging all models by evaluating them on a completely new dataset, where the style of the text
somewhat changes. Since the models being compared are all trained using different datasets, by having
an evaluation dataset not used by any of the models creates a better comparison in the sense that the
dataset does not influence the results, e.g., if we compared all models using the test set used in Section

4.6, the models trained using the Quaero dataset may be positively influenced.

6.1.2.1 Pre-processing

FTBNER was pre-processed to have the named-entity types, encoding scheme and format as described
in Section 4.3. The first step was to join the sets that FTBNER comes divided in into one dataset, with
the goal of evaluating on as much data as possible and have all named-entity types well represented.

The named-entity types used in this dataset were converted to the set { Person, Location, Organi-
zation }, a set common to what the models being evaluated were trained with. This set is represented,
respectively, by the abbreviations: "PER", "LOC" and "ORG". It was necessary to remove Product and
Fictional Character annotations as they do not fit the goal set. Company was converted to Organi-
zation and, after manual revision, POl was converted also to Organization. Furthermore, in FTBNER
the named-entity types are represented by their full name, so, it was necessary to map them to the
abbreviations, i.e., Person to "PER", Location to "LOC" and Organization to "ORG".

In the likes of the previous evaluations in Chapter 4, we want to use the "conlleval" evaluation script,

86

s0, having the dataset in a CoNLL style format is required. IOB encoding, more specifically IOB-1 also
makes sense since the models that will evaluated with FTBNER will predict the labels in that encoding.

Regarding the format, the dataset is in a CoNLL style similar to the goal, so it was only necessary to
remove the columns that contained non-necessary information, keeping only the token and respective
NER label. Moreover, we converted the IOB-2 encoding scheme to IOB-1, the goal encoding scheme.

The dataset contains tokens that are composed by multiple words separated by underscore, e.g.,
"ll_est_vrai_que". Furthermore, hyphenated words contain underscores around the hyphen, e.g., "assurance_-
_maladie". To keep uniform to the other datasets, underscores were removed from hyphenated words
and multiple word tokens were separated into multiple tokens with the appropriate label.

The datasets used to train the models that will be evaluated, Quaero and WikiNER, both, generally,
include personal titles as part of the named-entities, however, FTBNER does not. Since the evaluation
consist in exact matching, if the model predicts the personal title as part of a given named-entity, but the
FTBNER dataset does not have it annotated as part of the named-entity, then it will be considered as an
incorrect prediction. Take this as an example, considering the first column corresponds to the token, the

second column the true NER label and the third column the predicted NER label:

M. O I-PER
Bush I-PER I-PER

Although the predicted label for "Bush" matches its true label, the whole named-entity needs to match
to be considered a correct prediction. Since we can’t change the pre-trained models, another approach
to have a more accurate evaluation is to change FTBNER to include the personal titles as part of the
named-entities. This was the approach we took, which consisted in finding all personal titles’ that are
followed by a Person named-entity and appropriately converting them to be part of the named-entity.

After the pre-processing the dataset has 12351 sentences with 364522 tokens and 11507 named-
entities. Moreover, there are 2017 persons, 3754 locations and 5736 organizations. Contrary to the

training datasets (Section 4.3.4) FTBNER has organizations as the most represented named-entity type.

6.1.3 Evaluation methodology and metrics

We can refer back to Section 4.4 in Chapter 4 for the evaluation methodology and metrics that are go-
ing to be applied. The goal is to access the quality of each NER model, when it comes to predicting
named-entities, by giving each model the sentences present in the FTBNER dataset. The "conlleval"
evaluation script will, again, be used to evaluate each model’s performance where exact-match evalua-
tion is considered. The metrics used to evaluate each model are precision, recall and F'1-score, which

are presented overall (obtained by micro-averaging) and for each named-entity type. When selecting

Thttps:/fr.wikipedia.org/wiki/Titres_et_pr%C3%A9dicats

87

the best performing model we aim to maximize the F'1-score. Additionally, the average time to extract

named-entities from a sentence for each model is also presented.

6.1.4 Results

The evaluation results for each NER model are shown in Table 6.1. All models show, for locations and
persons, a higher recall than precision. This means the models detect more named-entities at the cost

of wrongly predicting some. It is also true for locations except for the flair-pre-trained model.

flair-pre-trained Precision | Recall F=1
LOC 53.26% | 77.71% | 63.20
ORG 74.57% | 75.61% | 75.09
PER 71.76% | 84.89% | 77.78
Overall 65.55% | 77.92% | 71.20
flair-ssf-quaero Precision | Recall | Fg—;
LOC 68.34% | 73.87% | 71.00
ORG 37.75% | 25.28% | 30.28
PER 65.91% | 92.67% | 77.03
Overall 56.76% | 52.95% | 54.79
spacy-pre-trained-md | Precision | Recall | Fg—;
LOC 55.77% | 78.00% | 65.04
ORG 72.72% | 54.85% | 62.53
PER 53.09% | 74.98% | 62.16
Overall 61.06% | 65.93% | 63.40
spacy-pre-trained-sm | Precision | Recall | Fg—;
LOC 54.92% | 79.41% | 64.93
ORG 71.92% | 53.23% | 61.18
PER 57.32% | 79.19% | 66.50
Overall 61.25% | 66.32% | 63.68
stanford-quaero Precision | Recall | Fg—;
LOC 62.17% | 69.05% | 65.43
ORG 15.82% | 5.39% | 8.04
PER 55.31% | 88.26% | 68.00
Overall 50.12% | 40.69% | 44.91

Table 6.1: NER evaluation results on FTBNER

The model previously used in CONNECTIONLENS, the stanford-quaero model, is, overall, outper-
formed by all models, having an overall F1-score of about 45%. It shows very low scores for organi-
zations, with a F'1-score of 8.04%, however, for locations and persons the scores are comparable to
other models’ scores. The flair-ssf-quaero model, the model created by us in Chapter 4, also shows low

performance for organizations, with a F'1-score of 30.28%. Both the stanford-quaero and flair-ssf-quaero

88

models are trained on the Quaero dataset, which is composed of newspaper issues of the end of the
19th century, where less organizations existed. That combined with the fact that the Quaero dataset is
smaller than WikiNER, may contribute to the low scores. Moreover, flair-ssf-quaero manages to achieve
the highest precision and F'1-score for locations, respectively 68.34% and 71%, and recall for persons,
92.67%. Despite that, it is the overall second worst model, with an overall F'1-score of about 55%.

The spacy-pre-trained-sm model has a slightly better overall performance than spacy-pre-trained-
md, with an overall F'1-score difference of 0.28%. spacy-pre-trained-md shows higher F'1-scores for
locations and organizations, but is worse on people, driving down its overall quality.

The flair-pre-trained is the overall best model, not just in F'1-score, for which it has 71.20%, but all
overall metrics. Its overall F'1-score is almost 8% higher that its preceding best model. Moreover, it has
the best scores for organizations, with a difference from the other models of more than 10% in F'1-score
and 20% in recall. This model is the best NER model we evaluated until now.

The pre-trained models are overall better than the models trained by us, flair-ssf-quaero and stanforad-
quaero. Focusing on flair-ssf-quaero, it uses the word embedding combination that showed better results
in Section 4.5. Considering the results, we decided to train one last model on the WikiNER dataset, in its
pre-processed version, using the word embedding combination of flair-ssf-quaero, i.e., stacked forward
and backward French Flair embeddings with French fastText embeddings. Moreover, we did the same
steps as in Section 4.7: randomly divided the sentences in the WikiNER dataset in two, 80% for the train
set and 20% for the development set, and set the number of maximum epochs to 150 while training. The
results of evaluating this model, which we will call flair-ssf-wikiner, on the FTBNER dataset are shown in
Table 6.2.

flair-ssf-wikiner | Precision | Recall Fa=1
LOC 59.52% | 79.36% | 68.02
ORG 76.56% | 74.55% | 75.54
PER 72.29% | 84.94% | 78.10
Overall 69.20% | 77.94% | 73.31

Table 6.2: Results of flair-ssf-wikiner on FTBNER

We consider flair-ssf-wikiner to be even better than flair-pre-trained. It has better overall, 73.31%,
and named-entity specific F'1-scores. The most noticeable improvement is in terms of organizations,
where the model shows better scores for all metrics, with an improvement of about 6% in precision, 5%
in F'1-score and 2% in recall, when compared to flair-pre-trained. Moreover, it surpasses flair-pre-trained
for all scores except the recall of organizations. This is the best performing model evaluated and it was
selected to integrate CONNECTIONLENS.

Looking at the extraction speed, the average time to extract named-entities from a sentence is: for

flair-ssf-quaero ??ms, flair-ssf-wikiner 22ms flair-pre-trained 23ms, spacy-pre-trained-md 9ms, spacy-

89

pre-trained-sm 9ms, and stanford-quaero 1ms. The quality of Flair models come at a cost: they take, on
average, more time to extract named-entities from sentences. SpaCy extraction is about twice as fast,
and Stanford NER much faster.

6.2 Relationship Extraction

This Section entails the experimental evaluation for RE. Section 6.2.1 describes the dataset used. Sec-
tion 6.2.2 details the methodology and metrics we used for evaluation. Section 6.2.3 presents the training
details. Then, Section 6.2.4 gives a description of the dataset variants, i.e., alternative versions, created

from the original dataset. Lastly, Section 6.2.5 presents the results obtained with each model variant.

6.2.1 Dataset

We train and evaluate our model using the dataset we created in Chapter 5. The dataset was built
using distant supervision by aligning relationships from DBpedia, in its 2016 version, with sentences
from Wikipedia articles (also from 2016), in French. There are 30 relationship types including the N A
relationship, that indicates the nonexistence of a relationship between two entities.

The dataset was randomly divided in terms of relationship instances in three sets: 60% of the in-
stances for the train set, 20% of the instances for the development set and 20% of the instances for the
test set. The train set contains 59625 sentences, 38064 entities and 41536 relationship instances. The
development set contains 14707 sentences, 11451 entities and 10269 relationship instances. And, the

test set contains 19322 sentences, 14177 entities and 13063 relationship instances.

6.2.2 Evaluation methodology and metrics

Following the evaluation of previous related works, we evaluate our model using held-out evaluation.
A part of the relationships instances in the KB, in our case DBPedia, is "held-out" to create a test set
of relationship instances. Hence, when evaluating the model, the relationships it discovers from test
sentences are compared to the held-out relationship instances. When we divided the model in terms of
relationship instances we were already taking into consideration the held-out evaluation.

We evaluate the performance of our model using the following metrics, based on the work of [56] and
subsequent works, and based on the capability of the model ranking the relationships it predicts (with a

confidence score):

+ Precision-recall (PR) curves - it shows the precision at different levels of recall. A PR curve [98]

90

can be defined as the set of points for a range of confidence thresholds c:
PR(-) = {(recall(c), precision(c)), —0o < ¢ < +00},

where recall(c) is the portion of positive relationships that are correctly predicted, with a confi-
dence above ¢, and precision(c) is the portion of correctly predicted positive relationships from all

relationships predicted as positive, with a confidence above c.

* Area under curve (AUC) - summarizes the PR curve in a single value. It is also referred to as

average precision since it is the weighted average of precisions at each confidence threshold c.

» Micro-F'1 - there are multiple precision and recalls in this setting. The micro-F'1 score in this setting

is the highest F'1 score of all precision and recall pairs.
» Precision@N (P@N) - is is the precision with the top N highest confidence predictions.

In the test set, there are 10242 relationship instances that possess only one sentence, and 2821
relationship instances with more than one sentence. Following [56], we evaluate our model on the
relationship instances with more than one sentence, to see the effect of the sentence-level attention
mechanism that was built do deal with multiple sentences. Moreover, we evaluate the model on three
different test settings: (i) one, where for each relationship instance we randomly select one sentence to
use for prediction, (ii) two, where for each relationship instance we randomly select two sentences to
use for prediction, and, (ii¢) all, where all sentences of the relationship instances are used for prediction.
We compute P@100, P@200, P@300, and their means, using the three test sets that result from the

different settings described. We also compute, for each test set setting, the AUC and micro-F'1.

6.2.3 Training details

We use OpenNRE to train a bag-level PCNN-ATT model, as we have mentioned in Section 5.6. For
training, we use a maximum of 30 epochs, using the train set. Each epoch generates a model and,
in the end, the model that gives the best AUC on the development set is kept. In what concerns the
remaining hyperparameters, we use use OpenNRE’s default hyperparameters for bag-level training.

To train the final model we use the complete dataset and a maximum of 150 epochs. However, it
is still necessary to keep a portion of the dataset to be used as the development set. Therefore, we
randomly divide the dataset, again, in train and development sets, keeping 80% of the sentences for the
train set and 20% of the sentences for the development set.

The use of a bag-level model restricts our word embedding use to traditional, static word embeddings.
Dynamic word embeddings, e.g., BERT, or specifically for French, CamemBERT, are not possible to use

in combination with bag-level training due to it being to hard and memory limits. OpenNRE bag-level

91

training only allows the first case for this reason, and, although they managed to train a bag-level BERT
limited to a bag size of less than 3, it underperformed compared to not using BERT. In conclusion, we

used the freely available fastText word embeddings in French, trained on Wikipedia®.

6.2.4 Experimenting with dataset variants

We decided to experiment with alternative versions of the dataset. We will call the original dataset we
have previously described by version 1 (v1). For version 2 (v2) we separated the locatedIn relationship
in two different relationships: partOf for relationships where both entities are locations and locatedin for
when ent; is an organization and ent, is a location. Originally, there are 22051 relationship instances
and 26447 sentences for the locatedIn relationship type. In "version 2", there are 19901 relationship
instances and 23588 sentences for the relationship partOf and 2150 relationship instances and 2859
sentences for the relationship locatedin.

For version 3 (v3) we took the original dataset, and separated the capital relationship from where
it was inserted into, i.e., locatedin, to be a separate relationship. Moreover, there are 58 relationship
instances and 157 sentences for the relationship capital.

The goal of these dataset variants is to examine if the changes in the dataset significantly affect the
performance of the model. Three different models will be trained and their results will be presented and

analyzed in Section 6.2.5.

6.2.5 Results

1.0 -
0.8 -

0.6 -

precision

0.4-

0.2-

OO i 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
recall

Figure 6.1: PR curves of RE models

2https://fasttext.cc/docs/en/pretrained-vectors.html

92

In Figure 6.1 the PR curves of the different models we trained are shown. We can see how each
model variant performs over different recall levels. There is hardly any difference between the models
performance. This means that the changes made to the original dataset, overall, have no effect on the
precision and recall. Moreover, Table 6.3 shows a comparison of the AUC and micro-F'1 values for the
model variants. The original version, v1, is slightly better that the other versions, v2 and v3, in terms of
AUC and micro-F'1, with 97.10 and 91.78, respectively. The high values of AUC all models share mean
both a high recall and a high precision. Again, the variants applied to the dataset do not make, overall, a
significant difference. The good results produced by the models are influenced by the fact that the train

set and the test set are chunks of the same dataset. We checked, and there is no test leak problem, i.e.,

AUC micro-F'1
vi 97.10 91.78
v2 97.09 91.61
v3 97.06 91.65

Table 6.3: AUC and micro-F'1 of RE models

there are no relationship instances in the test set that were used for training.

One
P@100 | P@200 | P@300 | P@Mean | AUC | micro-F1
vl | 99 99.5 99 99.2 88.64 | 81.18
v2 | 99 98 97.7 98.2 88.25 | 80.87
v3 | 99 99.5 98.7 99.1 88.96 | 81.86
Two
P@100 | P@200 | P@300 | P@Mean | AUC | micro-F'1
vl | 99 99.5 99.3 99.3 92.05 | 84.36
v2 | 100 100 99.7 99.9 92.18 | 85.18
v3 | 99 99.5 99 99.2 92.37 | 85.01
All
P@100 | P@200 | P@300 | P@Mean | AUC | micro-F1
vl | 99 99.5 99.3 99.3 93.28 | 85.99
v2 | 100 99.5 99.7 99.7 93.16 | 86.08
v3 | 99 99.5 99.3 99.3 93.03 | 85.96

Table 6.4: P@N, AUC and micro-F'1 for different number of sentences in bags

In Table 6.4 the P@100, P@200, P@300, AUC and micro-F'1 with one, two and all sentences for
each entity pair, for all model variants are presented. For all models, increasing the number of sentences
improves the results, particularly in terms of AUC and micro-F'1. From the one test setting to the all test

setting there is an improvement of around 5% for micro-F'1, for all models. Moreover, improvements are

noticeable just by increasing the number of sentences from one to two.

93

In the end, we decided to select the v1 model, i.e., the model trained on the original dataset, although,
the differences in performance between all models are not significant. Moreover, v1 has the best overall
AUC and micro-F'1. When evaluating the models on different number of sentences in a bag: (7) it has the
best P@N for all N values in the one test setting, (i:) it has the best AUC when using all sentences, i.e., in
the all test setting. With v1 we also do not have the locatedin relationship divided in other relationships,

which may confuse the model if the relationships prove to be too similar.

6.3 Integration in ConnectionLens

The goal of the thesis is to develop a solution for NER and RE for French news texts that can be
integrated in CONNECTIONLENS. The solution consisted in developing machine learning models for
each task. Both the NER and the RE models we developed and selected require Python packages.
However, CONNECTIONLENS is implemented in Java. To integrate the selected NER and RE models,
we decided to create a micro web-service, running with the CONNECTIONLENS code, using Flask® [99].

The Flask service starts by loading the models and waits for HTTP requests, that will come from
CONNECTIONLENS. When CONNECTIONLENS needs to extract named-entities and/or relationships from
text an HTTP POST request is sent to the service.

In particular for NER, an HTTP POST request is made with the input text, which the service receives.
The service starts by tokenizing and segmenting the text into sentences, then, provides the tokenized
sentences to the model to make predictions. These predictions are sent to CONNECTIONLENS in an
HTTP response in JSON, that is composed of a JSON object containing an array of sentences and their
respective predictions. Each prediction contains the named-entity itself, its position in the sentence and
the predicted label with an associated confidence score. Below is an example of the returned JSON for

the sentence "Barack Hussein Obama Il, né le 4 ao(t 1961 a Honolulu.":

{

"sentences": [
{
"text":"Barack Hussein Obama II , né le 4 aolt 1961 a Honolulu .",
"labels":[],
"entities": [
{ "text":"Barack Hussein Obama II",

"start_pos":0,
"end_pos":23,
Iltypell . IIPERH/

"confidence":0.7960530519485474 1},

Shttps:/flask.palletsprojects.com/

94

{ "text":"Honolulu",
"start_pos":46,
"end_pos":54,
"type":"LOC",
"confidence":0.9999279975891113 } |
}
1}

In what concerns RE, at the moment of writing thesis the integration is not accomplished. The idea
is to still use the Flask service for the integration and make use of CONNECTIONLENS capabilities of
node matching, that link nodes whose data is considered to be similar, as we exemplified in Chapter 1.
This way, we can group all sentences that contain the same two entities, i.e., a bag. The service will
load the RE model and wait for an HTTP POST request to be made by CONNECTIONLENS with a bag of

sentences with the following structure:

[

"text’: ey
"h': {’pos’: [start, end], ...},
Tt {'pos’: [start, end], ...}

}]
The predicted relationship, for the entity pair, and its corresponding confidence score will be returned

to CONNECTIONLENS in an HTTP response.

95

Conclusion

Contents
7.1 ConcluSioNs i it it it et e e e e e e e e e e e e 97
7.2 Future Work v i i i it i st e e e e s e e et e st et e et e et 98

96

In this thesis we propose the development of a solution for NER and RE for French news text, to
be integrated in CONNECTIONLENS. This entails discovering the best approach for performing NER
and RE, that can be applied effectively and efficiently to French texts. This chapter presents the main

conclusions and suggestions for future work.

7.1 Conclusions

For both NER and RE, implementing a technique from scratch, mainly a machine learning algorithm,
which we would then train, was not deemed necessary due to the availability of tools, namely third-party
libraries that allow one to train a model by just providing the, usually labeled, data.

In what concerns NER, we found black-box tools and third-party libraries with pre-trained models that
can perform French NER off-the-shelf. Black-box tools are usually a web service accessible by an API,
and impose constraints like a maximum number of accesses per a certain time period. The constraints
are not desired for CONNECTIONLENS, so we turned to third-party libraries. Both Flair and SpaCy use
deep-learning state-of-the-art techniques and have French NER pre-trained models available, yet, we
decided to train our own French NER model using the best model we could create using those tools to
see if we could improve upon their pre-trained models.

We pre-processed several datasets with the goal of combining them for training our models, in the
end we ended up training the models using a pre-processed version of the Quaero Old Press Extended
Named Entity dataset. After experimenting with different configurations, e.g., word embeddings, for
training models using Flair and SpaCy, we concluded and selected as the best performing model, a Flair
model trained using the Quaero dataset and stacked forward and backward French Flair embeddings
with French fastText embeddings, which we named flair-ssf-quaero. It achieved an overall F'1-score of
82.44.

We evaluated this model along with the pre-trained models, and the model previously present in
CONNECTIONLENS on the FTBNER dataset and considering the results we decided to train one last
model on the WikiNER dataset using the word embedding combination of flair-ssf-quaero, i.e., stacked
forward and backward French Flair embeddings with French fastText embeddings, which we named flair-
ssf-wikiner. This resulted in flair-ssf-wikiner being the best model evaluated, with an overall F'1-score of
73.31, and was selected to integrate CONNECTIONLENS.

Regarding RE, we found two tools capable of dealing with French, off-the-shelf: IBM Watson NLU
and the French version of ReVerb. IBM Watson NLU is a web service and thus impose constraints not
desirable dor CONNECTIONLENS. On the other hand, the French version of ReVerb is an Open IE system
and the fact that there is not a defined set of relationships that can be extracted is, likewise, not desired

for CONNECTIONLENS. Moreover, we found third-party libraries that, although only have pre-trained

97

models available for English, allow one to train their own model. Since datasets labeled with entities and
relationships do not exist for French, we are limited to using a tool that implements a technique that does
not require manually labeled data. The only tool we found was OpenNRE, that besides allowing training
supervised models, also allows training distantly supervised models, by implementing bag-level training.

Therefore, we decided to train a bag-level model using OpenNRE with a dataset we built using distant
supervision. We used French DBpedia to obtain relationship instances and French Wikipedia articles
to extract sentences expressing those relationships. We filtered and grouped the DBpedia relationships
and that result in 30 relationships types including the N A relationship, that indicates the nonexistence
of a relationship between two entities.

After building the dataset we experimented with alternative versions of the dataset where small
changes were made to the relationship groups. Each variant of the dataset resulted in a different model
which we evaluated. The best performing model was the one trained on the original version of the
dataset, which achieved an AUC and a micro-F'1 of 97.10 and 91.78, respectively, and that we selected
to integrate CONNECTIONLENS.

Since both the NER and the RE model require Python packages to work and CONNECTIONLENS
is implemented is Java, to integrate the NER and RE models we used Flask to create a micro web-
service that runs with CONNECTIONLENS. Moreover, HTTP requests are made to the service to predict
either named-entities or relationships and an HTTP response is sent to CONNECTIONLENS with the
predictions. At the moment of writing this thesis the integration of the RE part is not accomplished. On
the other hand, the NER segmented is integrated and included in the paper [100] where the NER model

and experiments are described along with the approach of CONNECTIONLENS.

7.2 Future Work

In general, for both the NER and RE models, we would like to experiment more in regard to hyperpa-
rameter optimization.

In what concerns possible future work for NER, in an attempt to improve the results other encoding
schemes can be considered for the training datasets. Moreover, the evaluation could also be not in terms
of partial-match instead of exact-match, so the evaluation is not so strict and allows partial matches,
where for example the boundaries of the named-entity may not be entirely correct according to the true
annotation in the dataset.

With respect to RE, concerning future work, we would like to train the model with more relationship
instances and sentences. Moreover, using a text corpus other than Wikipedia, which is a harder and
more real scenario is also something we would like to explore. Even just creating a test set based on

a distinct dataset, from another domain, e.g., news, would give a more accurate evaluation of the mod-

98

els Additionally, performing manual evaluation of the models would also contribute to a more accurate
evaluation. The results we presented for RE give an overall idea of the performance of the models and
do not show how they behave for each relationship type. For this reason we would like to, also, present
some of metrics, namely, AUC and micro-F'1, per relationship type.

Another experiment we would also like to devise consists in the use of French contextual word em-
beddings, e.g., CamemBERT, and not just static, traditional word embeddings. This would, currently,
only be possible in a supervised sentence-level approach. Moreover, we already prepared the code to
use CamemBERT in OpenNRE in a sentence-level setting. In addition we would create another dataset,
using DBPedia and Wikipedia, and the distant supervision procedure, however, instead of distant su-
pervision assumptions, we would make the assumption that if two entities are related in the KB, there is
only one sentence that expresses the relationship, and select only the first sentence where the entities
co-occur, inspired by [90]. Due to Wikipedia’s standardized nature and the particularity that its sentences
usually express facts, we can assume that the first sentence where the given two entities co-occur, most

probably is the only one that expresses the relationship.

99

Bibliography

[1] J. Gray, L. Chambers, and L. Bounegru, The Data Journalism Handbook: How Journalists Can

Use Data to Improve the News. O'Reilly Media, 2012.

[2] C. Chanial, R. Dziri, H. Galhardas, J. Leblay, M.-H. L. Nguyen, and |. Manolescu, “Connectionlens:
Finding connections across heterogeneous data sources,” Proc. VLDB Endow., vol. 11, pp. 2030—
2033, Aug. 2018.

[3] S. Sarawagi, “Information extraction,” Foundations and Trends in Databases, vol. 1, no. 3, pp. 261—
377, 2008.

[4] M.-F. Moens, Information Extraction: Algorithms and Prospects in a Retrieval Context, vol. 21. 01
2006.

[5] A. McCallum, “Information extraction: Distilling structured data from unstructured text,” Queue,
vol. 3, pp. 4:48-4:57, Nov. 2005.

[6] D. Jurafsky and J. H. Martin, Speech and Language Processing (3rd Edition, draft). 2018.

[7] D. Campos, S. Matos, and J. L. Oliveira, “Biomedical named entity recognition: A survey of
machine-learning tools,” in Theory and Applications for Advanced Text Mining (S. Sakurai, ed.),
ch. 8, Rijeka: IntechOpen, 2012.

[8] J. Pustejovsky and A. Stubbs, Natural Language Annotation for Machine Learning. No. v. 9, p.
878 in Natural Language Annotation for Machine Learning, O’Reilly Media, Incorporated, 2012.

[9] L. Ramshaw and M. Marcus, “Text chunking using transformation-based learning,” in Third Work-

shop on Very Large Corpora, 1995.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273-297,
1995.

[11] D. Nadeau and S. Sekine, “A survey of named entity recognition and classification,” Lingvisticae

Investigationes, vol. 30, no. 1, pp. 3—-26, 2007.

100

[12] R. Sharnagat, “Named entity recognition: A literature survey,” 2014.

[13] J. Patrick, C. Whitelaw, and R. Munro, “Slinerc: The sydney language-independent named entity
recogniser and classifier,” in proceedings of the 6th conference on Natural language learning-

Volume 20, pp. 1-4, Association for Computational Linguistics, 2002.

[14] Y. Goldberg, Neural Network Methods for Natural Language Processing, vol. 37 of Synthesis

Lectures on Human Language Technologies. San Rafael, CA: Morgan & Claypool, 2017.

[15] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state markov

chains,” The annals of mathematical statistics, vol. 37, no. 6, pp. 1554—1563, 1966.

[16] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical estimation for probabilis-
tic functions of markov processes and to a model for ecology,” Bulletin of the American Mathemat-
ical Society, vol. 73, no. 3, pp. 360-363, 1967.

[17] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recogni-
tion,” Proceedings of the IEEE, vol. 77, pp. 257-286, Feb 1989.

[18] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268-278, 1973.

[19] A. Ratnaparkhi, “A maximum entropy model for part-of-speech tagging,” in Conference on Empir-

ical Methods in Natural Language Processing, 1996.

[20] A. McCallum, D. Freitag, and F. C. Pereira, “Maximum entropy markov models for information

extraction and segmentation.,”

[21] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic models for

segmenting and labeling sequence data,” 2001.

[22] C. Sutton and A. Mccallum, An Introduction to Conditional Random Fields for Relational Learning.
01 2007.

[23] C. Sutton, A. McCallum, et al., “An introduction to conditional random fields,” Foundations and
Trends® in Machine Learning, vol. 4, no. 4, pp. 267-373, 2012.

[24] H. M. Wallach, “Conditional random fields: An introduction,” Technical Reports (CIS), p. 22, 2004.

[25] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,” arXiv
preprint arXiv:1812.09449, 2018.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in

vector space,” arXiv preprint arXiv:1301.3781, 2013.

101

[27] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architectures for

named entity recognition,” arXiv preprint arXiv:1603.01360, 2016.

[28] Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf models for sequence tagging,” arXiv preprint
arXiv:1508.01991, 2015.

[29] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” in Pro-
ceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 1532—1543, 2014.

[30] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword informa-

tion,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135-146, 2017.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional trans-
formers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[32] A. Akbik, D. Blythe, and R. Volligraf, “Contextual string embeddings for sequence labeling,” in
Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638—1649,
2018.

[33] R. Al-Rfou, V. Kulkarni, B. Perozzi, and S. Skiena, “Polyglot-ner: Massive multilingual named
entity recognition,” in Proceedings of the 2015 SIAM International Conference on Data Mining,
pp. 586-594, SIAM, 2015.

[34] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky, “The stanford corenlp
natural language processing toolkit,” in Proceedings of 52nd annual meeting of the association for

computational linguistics: system demonstrations, pp. 55-60, 2014.

[385] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information into information
extraction systems by gibbs sampling,” in Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, ACL ’05, (Stroudsburg, PA, USA), pp. 363-370, Association for
Computational Linguistics, 2005.

[386] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran, “Learning multilingual named

entity recognition from wikipedia,” Oct 2017.

[37] F. Dernoncourt, J. Y. Lee, and P. Szolovits, “NeuroNER: an easy-to-use program for named-entity
recognition based on neural networks,” Conference on Empirical Methods on Natural Language
Processing (EMNLP), 2017.

[38] S. Brin, “Extracting patterns and relations from the world wide web,” in The World Wide Web and
Databases (P. Atzeni, A. Mendelzon, and G. Mecca, eds.), (Berlin, Heidelberg), pp. 172—183,
Springer Berlin Heidelberg, 1999.

102

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

E. Agichtein and L. Gravano, “Snowball: Extracting relations from large plain-text collections,” in
Proceedings of the fifth ACM conference on Digital libraries, pp. 85-94, ACM, 2000.

S. Pawar, G. K. Palshikar, and P. Bhattacharyya, “Relation extraction: A survey,” arXiv preprint
arXiv:1712.05191, 2017.

D. Ravichandran and E. Hovy, “Learning surface text patterns for a question answering system,” in
Proceedings of the 40th Annual meeting of the association for Computational Linguistics, pp. 41—
47, 2002.

P. Pantel and M. Pennacchiotti, “Espresso: Leveraging generic patterns for automatically harvest-
ing semantic relations,” in Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pp. 113—
120, 2006.

R. Gabbard, M. Freedman, and R. Weischedel, “Coreference for learning to extract relations: Yes
virginia, coreference matters,” in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pp. 288—293, 2011.

A. Sun, R. Grishman, and S. Sekine, “Semi-supervised relation extraction with large-scale word
clustering,” in Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, (Portland, Oregon, USA), pp. 521-529, Association for

Computational Linguistics, June 2011.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction without
labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume

2-Volume 2, pp. 1003—1011, Association for Computational Linguistics, 2009.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively created
graph database for structuring human knowledge,” in Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pp. 1247—1250, 2008.

D. Vrandeci¢ and M. Krétzsch, “Wikidata: a free collaborative knowledgebase,” Communications
of the ACM, vol. 57, no. 10, pp. 78-85, 2014.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey,
P. Van Kleef, S. Auer, and C. Bizer, “Dbpedia - a large-scale, multilingual knowledge base extracted

from wikipedia,” Semantic Web Journal, vol. 6, 01 2014.

F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in Proceed-
ings of the 16th international conference on World Wide Web, pp. 697—-706, 2007.

103

[50] R. Hoffmann, C. Zhang, and D. S. Weld, “Learning 5000 relational extractors,” in Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, (Uppsala, Sweden),

pp. 286—295, Association for Computational Linguistics, July 2010.

[51] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their mentions without labeled text,”
in Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 148-163, Springer, 2010.

[52] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld, “Knowledge-based weak supervi-
sion for information extraction of overlapping relations,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, (Portland, Ore-
gon, USA), pp. 541-550, Association for Computational Linguistics, June 2011.

[53] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning, “Multi-instance multi-label learning
for relation extraction,” in Proceedings of the 2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Language Learning, (Jeju Island, Korea),
pp. 455—465, Association for Computational Linguistics, July 2012.

[54] D. Zeng, K. Liu, Y. Chen, and J. Zhao, “Distant supervision for relation extraction via piecewise
convolutional neural networks,” in Proceedings of the 2015 conference on empirical methods in

natural language processing, pp. 1753—-1762, 2015.

[55] D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, et al., “Relation classification via convolutional deep

neural network,” 2014,

[56] Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun, “Neural relation extraction with selective attention
over instances,” in Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), (Berlin, Germany), pp. 2124—2133, Association for Compu-
tational Linguistics, Aug. 2016.

[57] S. Vashishth, R. Joshi, S. S. Prayaga, C. Bhattacharyya, and P. Talukdar, “RESIDE: Improv-
ing distantly-supervised neural relation extraction using side information,” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, (Brussels, Belgium),

pp. 1257—1266, Association for Computational Linguistics, Oct.-Nov. 2018.

[58] Z.-X. Ye and Z.-H. Ling, “Distant supervision relation extraction with intra-bag and inter-bag atten-
tions,” arXiv preprint arXiv:1904.00143, 2019.

[59] P. Xu and D. Barbosa, “Connecting language and knowledge with heterogeneous representations

for neural relation extraction,” arXiv preprint arXiv:1903.10126, 2019.

104

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, “Open information extrac-

tion from the web.,”

C. Niklaus, M. Cetto, A. Freitas, and S. Handschuh, “A survey on open information extraction,” in
Proceedings of the 27th International Conference on Computational Linguistics, (Santa Fe, New

Mexico, USA), pp. 3866—3878, Association for Computational Linguistics, Aug. 2018.

M. Banko and O. Etzioni, “The tradeoffs between open and traditional relation extraction,” in Pro-
ceedings of ACL-08: HLT, (Columbus, Ohio), pp. 28—36, Association for Computational Linguis-
tics, June 2008.

F. Wu and D. S. Weld, “Open information extraction using Wikipedia,” in Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, (Uppsala, Sweden), pp. 118—

127, Association for Computational Linguistics, July 2010.

A. Fader, S. Soderland, and O. Etzioni, “ldentifying relations for open information extraction,” in
Proceedings of the conference on empirical methods in natural language processing, pp. 1535—

1545, Association for Computational Linguistics, 2011.

M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al., “Open language learning for information
extraction,” in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, pp. 523-534, Association for

Computational Linguistics, 2012.

M. Yahya, S. Whang, R. Gupta, and A. Halevy, “Renoun: Fact extraction for nominal attributes,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 325-335, 2014.

A. Akbik and A. Léser, “Kraken: N-ary facts in open information extraction,” in Proceedings of the
Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extrac-
tion (AKBC-WEKEX), pp. 52-56, 2012.

F. Mesquita, J. Schmidek, and D. Barbosa, “Effectiveness and efficiency of open relation extrac-
tion,” in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing, pp. 447-457, 2013.

M. Mausam, “Open information extraction systems and downstream applications,” in Pro-
ceedings of the Twenty-Fifth International Joint Conference on Atrtificial Intelligence, 1JCAI'16,
p. 4074—4077, AAAI Press, 2016.

105

[70] J. Christensen, Mausam, S. Soderland, and O. Etzioni, “Semantic role labeling for open infor-
mation extraction,” in Proceedings of the NAACL HLT 2010 First International Workshop on For-
malisms and Methodology for Learning by Reading, (Los Angeles, California), pp. 52—60, Associ-

ation for Computational Linguistics, June 2010.

[71] H. Pal et al., “Demonyms and compound relational nouns in nominal open ie,” in Proceedings of

the 5th workshop on automated knowledge base construction, pp. 35-39, 2016.

[72] H. Bast and E. Haussmann, “Open information extraction via contextual sentence decomposition,”
in 2013 IEEE Seventh International Conference on Semantic Computing, pp. 154—-159, IEEE,
2013.

[73] N. Bhutani, H. V. Jagadish, and D. Radev, “Nested propositions in open information extraction,”
in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,

(Austin, Texas), pp. 55—64, Association for Computational Linguistics, Nov. 2016.

[74] L. Del Corro and R. Gemulla, “Clausie: clause-based open information extraction,” in Proceedings
of the 22nd international conference on World Wide Web, pp. 355-366, 2013.

[75] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging linguistic structure for open domain
information extraction,” in Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), vol. 1, pp. 344—354, 2015.

[76] K. Gashteovski, R. Gemulla, and L. d. Corro, “Minie: minimizing facts in open information extrac-

tion,” Association for Computational Linguistics, 2017.

[77] M. Cetto, C. Niklaus, A. Freitas, and S. Handschuh, “Graphene: Semantically-linked propositions

in open information extraction,” arXiv preprint arXiv:1807.11276, 2018.

[78] G. Stanovsky, J. Michael, L. Zettlemoyer, and I. Dagan, “Supervised open information extraction,”
in Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 885—
895, 2018.

[79] J. Michael, G. Stanovsky, L. He, |. Dagan, and L. Zettlemoyer, “Crowdsourcing question-answer

meaning representations,” arXiv preprint arXiv:1711.05885, 2017.

[80] L. Cui, F. Wei, and M. Zhou, “Neural open information extraction,” arXiv preprint arXiv:1805.04270,
2018.

106

[81] M. Surdeanu, D. McClosky, M. R. Smith, A. Gusev, and C. D. Manning, “Customizing an informa-
tion extraction system to a new domain,” in Proceedings of the ACL 2011 Workshop on Relational

Models of Semantics, pp. 2—10, Association for Computational Linguistics, 2011.

[82] F. Gotti and P. Langlais, “Harnessing open information extraction for entity classification in a french
corpus,” in Canadian Al 2016, Springer International Publishing Switzerland, Springer Interna-
tional Publishing Switzerland, 2016.

[83] X. Han, T. Gao, Y. Yao, D. Ye, Z. Liu, and M. Sun, “Opennre: An open and extensible toolkit for
neural relation extraction,” arXiv preprint arXiv:1909.13078, 2019.

[84] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran, “Learning multilingual named
entity recognition from wikipedia,” Artificial Intelligence, vol. 194, pp. 151-175, 2013.

[85] T. Kiss and J. Strunk, “Unsupervised multilingual sentence boundary detection,” Computational
linguistics, vol. 32, no. 4, pp. 485-525, 2006.

[86] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus of english:
The penn treebank,” 1993.

[87] C. Neudecker, “An open corpus for named entity recognition in historic newspapers,” in Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation (LREC’16),
(Portoroz, Slovenia), pp. 4348-4352, European Language Resources Association (ELRA), May
2016.

[88] O. Galibert, S. Rosset, C. Grouin, P. Zweigenbaum, and L. Quintard, “Extended named entity

annotation on ocred documents: From corpus constitution to evaluation campaign,”

[89] L. Ratinov and D. Roth, “Design challenges and misconceptions in named entity recognition,” in
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-

2009), (Boulder, Colorado), pp. 147—155, Association for Computational Linguistics, June 2009.

[90] A. P. Aprosio, C. Giuliano, and A. Lavelli, “Extending the coverage of dbpedia properties using

distant supervision over wikipedia.,”

[91] T. Nunes and D. Schwabe, “Building distant supervised relation extractors,” in 2014 IEEE Interna-

tional Conference on Semantic Computing, pp. 44-51, IEEE, 2014.

[92] M. Zajac and A. Przepidrkowski, “Distant supervision learning of dbpedia relations,” in International
Conference on Text, Speech and Dialogue, pp. 193-200, Springer, 2013.

107

[93] M. Dojchinovski, J. Hernandez, M. Ackermann, A. Kirschenbaum, and S. Hellmann, “Dbpedia nif:

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Open, large-scale and multilingual knowledge extraction corpus,” arXiv preprint arXiv:1812.10315,
2018.

M. Candito and B. Crabbé, “Improving generative statistical parsing with semi-supervised word
clustering,” 2009.

A. Abeillé, L. Clément, and F. Toussenel, “Building a treebank for french,” in Treebanks, pp. 165—
187, Springer, 2003.

B. Sagot, M. Richard, and R. Stern, “Annotation référentielle du corpus arboré de paris 7 en
entités nommées (referential named entity annotation of the paris 7 French TreeBank) [in French],”
in Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 2: TALN, (Grenoble,
France), pp. 535-542, ATALA/AFCP, June 2012.

L. Martin, B. Muller, P. J. Ortiz Suarez, Y. Dupont, L. Romary, E. de la Clergerie, D. Seddah,
and B. Sagot, “CamemBERT: a tasty French language model,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, (Online), pp. 7203—7219, Association

for Computational Linguistics, July 2020.

K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall curve: point estimates and
confidence intervals,” in Joint European conference on machine learning and knowledge discovery
in databases, pp. 451-466, Springer, 2013.

M. Grinberg, Flask web development: developing web applications with python. " O’Reilly Media,
Inc.", 2018.

O. Balalau, C. Conceigdo, H. Galhardas, I. Manolescu, T. Merabti, J. You, and Y. Youssef,
“Graph integration of structured, semistructured and unstructured data for data journalism,” ArXiv,
vol. abs/2007.12488, 2020.

108

RE Dataset statistics

entities per type and set

entity type | train | test | dev
PER 17182 6083 4833
LOC 15598 5818 4827
ORG 5284 2276 1791
total | 38064 | 14177 | 11451

A.2 # relationship instances per type and set

relation | train | test | dev

locatedIn 14063 | 4432 3556
birthPlace 9619 2994 2362
NA 5874 1849 1447

Continued on next page

109

relation | train | test | dev
deathPlace 2943 931 711
party 1652 | 544 416
familyMember 1053 | 334 292
parentOrganisation | 907 286 236
bandMember 766 254 173
sportsTeam 676 202 152
studiedAt 624 162 130
childOrganisation 564 187 152
nearTo 525 172 137
owner 298 110 58
spouse 278 81 67
influencedBy 218 64 56
leader 205 67 50
affiliatedWith 162 54 38
mentorOf 148 47 28
residesin 139 52 36
employedBy 126 43 24
foundedBy 124 36 27
mentoredBy 123 35 28
recordLabel 109 28 24
influenced 95 28 19
coach 74 23 15
architect 53 13 14
operator 41 11 8
keyPerson 41 14 7
created 25 6 4
knownFor 11 4 2
total \ 41536 \ 13063 \ 10269

A.3 # sentences per type and set

relationship type | train | test | dev
locatedIn 16774 | 5337 | 4336
birthPlace 11956 | 3798 | 2970
NA 8551 2792 | 2120
deathPlace 4034 125 1000
familyMember 2968 | 990 756
party 2840 1012 | 710
bandMember 2059 | 705 354

parentOrganisation | 2003 | 656 504
childOrganisation 1304 | 514 402

nearTo 1039 348 256
sportsTeam 933 250 205
spouse 752 263 196
studiedAt 718 187 139
owner 711 223 95

Continued on next page

110

relationship type | train | test | dev

leader 466 160 125
influencedBy 365 115 98
affiliatedWith 269 75 53
employedBy 261 60 40
foundedBy 249 75 49
mentorOf 233 106 46
resideslin 203 78 59
influenced 198 58 50
mentoredBy 188 99 37
recordLabel 134 32 32
coach 134 52 20
keyPerson 99 41 14
architect 72 19 21
operator 59 12 5
created 35 7 13
knownFor 18 8 2

total | 59625 | 19322 | 14707

111

	Titlepage
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Thesis Outline

	2 Background on Information Extraction
	2.1 Information Extraction Pipeline
	2.2 Auxiliary Resources
	2.3 Text Pre-processing
	2.4 Information Extraction Techniques

	3 Related Work
	3.1 Named-Entity Recognition
	3.1.1 Features
	3.1.2 Techniques
	3.1.2.1 Feature-based Methods
	3.1.2.2 Neural-based Methods

	3.1.3 Tools
	3.1.3.1 Stanford NER
	3.1.3.2 SpaCy
	3.1.3.3 Apache OpenNLP
	3.1.3.4 NeuroNER
	3.1.3.5 Flair
	3.1.3.6 AllenNLP
	3.1.3.7 IBM Watson NLU
	3.1.3.8 Open Calais
	3.1.3.9 Discussion

	3.2 Relationship Extraction
	3.2.1 Features
	3.2.2 Techniques
	3.2.2.1 Semi-Supervised Methods
	3.2.2.2 Distantly Supervised Methods
	3.2.2.3 Unsupervised Methods

	3.2.3 Tools
	3.2.3.1 Stanford OpenIE
	3.2.3.2 TextRazor
	3.2.3.3 IBM Watson NLU
	3.2.3.4 ReVerb
	3.2.3.5 OLLIE
	3.2.3.6 OpenNRE
	3.2.3.7 Discussion

	4 Creating a French NER model
	4.1 Pipeline
	4.2 Datasets
	4.2.1 WikiNER
	4.2.2 KB Europeana Newspapers NER
	4.2.3 Quaero Old Press Extended Named Entity

	4.3 Pre-processing
	4.3.1 WikiNER
	4.3.2 Europeana
	4.3.3 Quaero
	4.3.4 Data Exploration
	4.3.5 Joining the datasets
	4.3.6 Train, development and test sets

	4.4 Evaluation methodology
	4.5 Model selection
	4.5.1 Flair
	4.5.2 SpaCy

	4.6 Model evaluation
	4.7 Final model creation

	5 Distantly Supervised French RE
	5.1 DBpedia and Wikipedia
	5.2 Procedure
	5.3 Relationships
	5.4 Obtaining candidate sentences
	5.5 Selecting sentences
	5.6 Training

	6 Experimental Evaluation
	6.1 Named-Entity Recognition
	6.1.1 Evaluated models
	6.1.2 Evaluation dataset
	6.1.2.1 Pre-processing

	6.1.3 Evaluation methodology and metrics
	6.1.4 Results

	6.2 Relationship Extraction
	6.2.1 Dataset
	6.2.2 Evaluation methodology and metrics
	6.2.3 Training details
	6.2.4 Experimenting with dataset variants
	6.2.5 Results

	6.3 Integration in ConnectionLens

	7 Conclusion
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A RE Dataset statistics
	A.1 # entities per type and set
	A.2 # relationship instances per type and set
	A.3 # sentences per type and set

